login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324487
a(n) = A001350(n)^3.
5
0, 1, 1, 64, 125, 1331, 4096, 24389, 91125, 438976, 1771561, 7880599, 32768000, 141420761, 594823321, 2537716544, 10720765125, 45537538411, 192699928576, 817138135549, 3460080078125, 14662949322176, 62103840598801, 263115950765039, 1114512556032000, 4721424167332081, 19999831641819121
OFFSET
0,4
LINKS
M. Baake, J. Hermisson, P. Pleasants, The torus parametrization of quasiperiodic LI-classes, J. Phys. A 30 (1997), no. 9, 3029-3056. See Tables 5 and 6.
Index entries for linear recurrences with constant coefficients, signature (4,12,-44,-44,132,66,-132,-44,44,12,-4,-1).
FORMULA
From Colin Barker, Mar 13 2019: (Start)
G.f.: x*(1 + x^2)*(1 - 3*x + 47*x^2 - 96*x^3 + 104*x^4 + 96*x^5 + 47*x^6 + 3*x^7 + x^8) / ((1 - x)*(1 + x)*(1 - 3*x + x^2)*(1 + x - x^2)*(1 - x - x^2)*(1 + 3*x + x^2)*(1 - 4*x - x^2)).
a(n) = 4*a(n-1) + 12*a(n-2) - 44*a(n-3) - 44*a(n-4) + 132*a(n-5) + 66*a(n-6) - 132*a(n-7) - 44*a(n-8) + 44*a(n-9) + 12*a(n-10) - 4*a(n-11) - a(n-12) for n>11. (End)
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
N. J. A. Sloane, Mar 12 2019
STATUS
approved