login
A255996
Number of length n+5 0..1 arrays with at most one downstep in every n consecutive neighbor pairs.
1
64, 128, 188, 256, 337, 428, 530, 644, 771, 912, 1068, 1240, 1429, 1636, 1862, 2108, 2375, 2664, 2976, 3312, 3673, 4060, 4474, 4916, 5387, 5888, 6420, 6984, 7581, 8212, 8878, 9580, 10319, 11096, 11912, 12768, 13665, 14604, 15586, 16612, 17683, 18800
OFFSET
1,1
COMMENTS
Row 5 of A255992.
LINKS
FORMULA
Empirical: a(n) = (1/6)*n^3 + (5/2)*n^2 + (145/3)*n + 12 for n>3.
Empirical g.f.: x*(64 - 128*x + 60*x^2 + 16*x^3 - 7*x^4 - 8*x^5 + 4*x^6) / (1 - x)^4. - Colin Barker, Jan 26 2018
EXAMPLE
Some solutions for n=4:
..1....0....0....0....1....0....0....0....1....1....0....0....0....0....1....0
..1....0....0....1....1....1....0....0....1....0....1....1....0....0....1....1
..1....1....1....1....1....1....1....1....1....0....1....1....1....0....0....0
..1....0....1....1....1....0....0....0....1....0....0....0....1....0....0....1
..1....0....0....1....0....1....1....1....1....0....0....0....0....0....0....1
..1....0....1....1....0....1....1....1....1....0....0....1....0....1....0....1
..0....0....1....0....0....1....1....1....0....1....0....1....0....0....0....1
..0....0....1....1....1....1....1....0....0....1....1....1....0....0....1....1
..1....1....0....1....0....1....1....1....0....1....0....0....0....1....0....0
CROSSREFS
Cf. A255992.
Sequence in context: A215558 A324487 A258001 * A296166 A355265 A044187
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 13 2015
STATUS
approved