login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255992
T(n,k)=Number of length n+k 0..1 arrays with at most one downstep in every k consecutive neighbor pairs
11
4, 8, 8, 15, 16, 16, 26, 28, 32, 32, 42, 45, 53, 64, 64, 64, 68, 80, 100, 128, 128, 93, 98, 114, 144, 188, 256, 256, 130, 136, 156, 196, 256, 354, 512, 512, 176, 183, 207, 257, 337, 451, 667, 1024, 1024, 232, 240, 268, 328, 428, 568, 796, 1256, 2048, 2048, 299, 308
OFFSET
1,1
COMMENTS
Table starts
....4....8...15...26...42...64...93..130..176..232..299..378..470..576...697
....8...16...28...45...68...98..136..183..240..308..388..481..588..710...848
...16...32...53...80..114..156..207..268..340..424..521..632..758..900..1059
...32...64..100..144..196..257..328..410..504..611..732..868.1020.1189..1376
...64..128..188..256..337..428..530..644..771..912.1068.1240.1429.1636..1862
..128..256..354..451..568..705..854.1016.1192.1383.1590.1814.2056.2317..2598
..256..512..667..796..945.1134.1352.1584.1831.2094.2374.2672.2989.3326..3684
..512.1024.1256.1413.1574.1797.2088.2419.2766.3130.3512.3913.4334.4776..5240
.1024.2048.2365.2510.2645.2848.3175.3606.4090.4592.5113.5654.6216.6800..7407
.2048.4096.4454.4448.4476.4560.4824.5294.5912.6598.7304.8031.8780.9552.10348
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1)
k=3: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -a(n-4)
k=4: a(n) = 2*a(n-1) -a(n-2) +3*a(n-4) -2*a(n-5)
k=5: a(n) = 2*a(n-1) -a(n-2) +4*a(n-5) -3*a(n-6)
k=6: a(n) = 2*a(n-1) -a(n-2) +5*a(n-6) -4*a(n-7)
k=7: a(n) = 2*a(n-1) -a(n-2) +6*a(n-7) -5*a(n-8)
Empirical for row n:
n=1: a(n) = (1/6)*n^3 + (1/2)*n^2 + (4/3)*n + 2
n=2: a(n) = (1/6)*n^3 + n^2 + (23/6)*n + 3
n=3: a(n) = (1/6)*n^3 + (3/2)*n^2 + (31/3)*n + 4
n=4: a(n) = (1/6)*n^3 + 2*n^2 + (143/6)*n + 6 for n>2
n=5: a(n) = (1/6)*n^3 + (5/2)*n^2 + (145/3)*n + 12 for n>3
n=6: a(n) = (1/6)*n^3 + 3*n^2 + (533/6)*n + 28 for n>4
n=7: a(n) = (1/6)*n^3 + (7/2)*n^2 + (454/3)*n + 64 for n>5
EXAMPLE
Some solutions for n=4 k=4
..1....1....0....0....0....0....0....1....0....0....1....0....1....0....0....0
..1....0....0....1....1....0....0....1....1....0....1....0....1....0....0....1
..1....0....1....1....1....0....1....0....0....0....1....1....0....1....0....1
..1....1....0....1....0....1....1....0....0....0....0....1....0....0....1....1
..0....1....0....0....0....1....1....1....0....1....1....1....1....0....1....1
..1....1....0....1....1....0....1....1....0....0....1....1....1....0....1....1
..1....0....0....1....1....1....1....1....1....1....1....0....1....0....1....0
..1....1....1....1....0....1....0....1....0....1....0....1....0....0....1....1
CROSSREFS
Column 1 is A000079(n+1)
Column 2 is A000079(n+2)
Column 3 is A118870(n+3)
Row 1 is A000125(n+1)
Sequence in context: A333288 A159786 A083744 * A273572 A273779 A114027
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 13 2015
STATUS
approved