Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Dec 27 2024 15:44:27
%S 0,1,1,64,125,1331,4096,24389,91125,438976,1771561,7880599,32768000,
%T 141420761,594823321,2537716544,10720765125,45537538411,192699928576,
%U 817138135549,3460080078125,14662949322176,62103840598801,263115950765039,1114512556032000,4721424167332081,19999831641819121
%N a(n) = A001350(n)^3.
%H Seiichi Manyama, <a href="/A324487/b324487.txt">Table of n, a(n) for n = 0..1000</a>
%H M. Baake, J. Hermisson, P. Pleasants, <a href="http://dx.doi.org/10.1088/0305-4470/30/9/016">The torus parametrization of quasiperiodic LI-classes</a>, J. Phys. A 30 (1997), no. 9, 3029-3056. See Tables 5 and 6.
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (4,12,-44,-44,132,66,-132,-44,44,12,-4,-1).
%F From _Colin Barker_, Mar 13 2019: (Start)
%F G.f.: x*(1 + x^2)*(1 - 3*x + 47*x^2 - 96*x^3 + 104*x^4 + 96*x^5 + 47*x^6 + 3*x^7 + x^8) / ((1 - x)*(1 + x)*(1 - 3*x + x^2)*(1 + x - x^2)*(1 - x - x^2)*(1 + 3*x + x^2)*(1 - 4*x - x^2)).
%F a(n) = 4*a(n-1) + 12*a(n-2) - 44*a(n-3) - 44*a(n-4) + 132*a(n-5) + 66*a(n-6) - 132*a(n-7) - 44*a(n-8) + 44*a(n-9) + 12*a(n-10) - 4*a(n-11) - a(n-12) for n>11. (End)
%Y Cf. A001350, A152152, A324488, A324489.
%K nonn,easy
%O 0,4
%A _N. J. A. Sloane_, Mar 12 2019