login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of orbits of length n under the map whose periodic points are counted by A001350.
11

%I #52 Nov 06 2024 04:30:13

%S 1,0,1,1,2,2,4,5,8,11,18,25,40,58,90,135,210,316,492,750,1164,1791,

%T 2786,4305,6710,10420,16264,25350,39650,61967,97108,152145,238818,

%U 374955,589520,927200,1459960,2299854,3626200,5720274,9030450,14263078,22542396

%N Number of orbits of length n under the map whose periodic points are counted by A001350.

%C Euler transform is A000045. 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)^2*(1-x^6)^2*...) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + ... - _Michael Somos_, Jan 28 2003

%H Seiichi Manyama, <a href="/A060280/b060280.txt">Table of n, a(n) for n = 1..4000</a>

%H Michael Baake, Joachim Hermisson, and Peter Pleasants, <a href="http://dx.doi.org/10.1088/0305-4470/30/9/016">The torus parametrization of quasiperiodic LI-classes</a> J. Phys. A 30 (1997), no. 9, 3029-3056.

%H Michael Baake, John A.G. Roberts, and Alfred Weiss, <a href="http://arxiv.org/abs/0808.3489">Periodic orbits of linear endomorphisms on the 2-torus and its lattices</a>, arXiv:0808.3489 [math.DS], Aug 26, 2008. [_Jonathan Vos Post_, Aug 27 2008]

%H Larry Ericksen, <a href="http://siauliaims.su.lt/index.php?option=com_content&amp;view=article&amp;id=44&amp;Itemid=9">Primality Testing and Prime Constellations</a>, Šiauliai Mathematical Seminar, Vol. 3 (11), 2008. Mentions this sequence.

%H N. Neumarker, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/">Realizability of Integer Sequences as Differences of Fixed Point Count Sequences</a>, JIS 12 (2009) 09.4.5.

%H Y. Puri and T. Ward, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/WARD/short.html">Arithmetic and growth of periodic orbits</a>, J. Integer Seqs., Vol. 4 (2001), #01.2.1.

%H T. Ward, <a href="http://www.mth.uea.ac.uk/~h720/research/files/integersequences.html">Exactly realizable sequences</a>

%F a(n) = (1/n)* Sum_{d|n} mu(d)*A001350(n/d).

%F a(n) = A006206(n) except for n=2. - _Michael Somos_, Jan 28 2003

%F a(n) = A031367(n)/n. - _R. J. Mathar_, Jul 15 2016

%F G.f.: Sum_{k>=1} mu(k)*log(1 + x^k/(1 - x^k - x^(2*k)))/k. - _Ilya Gutkovskiy_, May 18 2019

%e a(7)=4 since the 7th term of A001350 is 29 and the 1st is 1, so there are (29-1)/7 = 4 orbits of length 7.

%e x + x^3 + x^4 + 2*x^5 + 2*x^6 + 4*x^7 + 5*x^8 + 8*x^9 + 11*x^10 + 18*x^11 + ...

%p A060280 := proc(n)

%p add( numtheory[mobius](d)*A001350(n/d), d=numtheory[divisors](n)) ;

%p %/n;

%p end proc: # _R. J. Mathar_, Jul 15 2016

%t A001350[n_] := LucasL[n] - (-1)^n - 1;

%t a[n_] := (1/n)*DivisorSum[n, MoebiusMu[#]*A001350[n/#]& ];

%t Array[a, 50] (* _Jean-François Alcover_, Nov 23 2017 *)

%o (PARI) {a(n) = if( n<3, n==1, sumdiv( n, d, moebius(n/d) * (fibonacci(d - 1) + fibonacci(d + 1))) / n)} /* _Michael Somos_, Jan 28 2003 */

%o (Magma)

%o A060280:= func< n | n le 2 select 2-n else (&+[Lucas(d)*MoebiusMu(Floor(n/d)) : d in Divisors(n)])/n >;

%o [A060280(n): n in [1..50]]; // _G. C. Greubel_, Nov 06 2024

%o (SageMath)

%o A000032=BinaryRecurrenceSequence(1,1,2,1)

%o def A060280(n): return sum(A000032(k)*moebius(n/k) for k in (1..n) if (k).divides(n))//n - int(n==2)

%o [A060280(n) for n in range(1,41)] # _G. C. Greubel_, Nov 06 2024

%Y Cf. A000032, A000045, A001350, A006206, A324485, A324489.

%Y First column of A348422.

%K easy,nonn

%O 1,5

%A _Thomas Ward_, Mar 29 2001