login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051582
a(n) = (2*n+8)!!/8!!, related to A000165 (even double factorials).
10
1, 10, 120, 1680, 26880, 483840, 9676800, 212889600, 5109350400, 132843110400, 3719607091200, 111588212736000, 3570822807552000, 121407975456768000, 4370687116443648000, 166086110424858624000, 6643444416994344960000
OFFSET
0,2
COMMENTS
Row m=8 of the array A(3; m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0.
LINKS
A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
FORMULA
a(n) = (2*n+8)!!/8!!.
E.g.f.: 1/(1-2*x)^5.
a(n) = (n+4)!*2^(n-1)/12. - Zerinvary Lajos, Sep 23 2006
From Peter Bala, May 26 2017: (Start)
a(n+1) = (2*n + 10)*a(n) with a(0) = 1.
O.g.f. satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 10*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 10*x/(1 - 2*x/(1 - 12*x/(1 - 4*x/(1 - 14*x/(1 - 6*x/(1 - ... - (2*n + 8)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 10*x/(1 - 12*x/(1 - 2*x/(1 - 14*x/(1 - 4*x/(1 - 16*x/(1 - 6*x/(1 - ... - (2*n + 10)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 384*sqrt(e) - 632.
Sum_{n>=0} (-1)^n/a(n) = 384/sqrt(e) - 232. (End)
MAPLE
seq(2^n*pochhammer(5, n), n=0..20); # G. C. Greubel, Nov 12 2019
MATHEMATICA
(2Range[0, 20]+8)!!/8!! (* Harvey P. Dale, Feb 03 2013 *)
Table[2^n*Pochhammer[5, n], {n, 0, 20}] (* G. C. Greubel, Nov 12 2019 *)
PROG
(PARI) vector(20, n, n--; (n+4)!*2^(n-1)/12) \\ Michel Marcus, Feb 09 2015
(Magma) F:=Factorial; [2^n*F(n+4)/F(4): n in [0..20]]; // G. C. Greubel, Nov 12 2019
(Sage) f=factorial; [2^n*f(n+4)/f(4) for n in (0..20)] # G. C. Greubel, Nov 12 2019
(GAP) F:=Factorial;; List([0..20], n-> 2^n*F(n+4)/F(4) ); # G. C. Greubel, Nov 12 2019
CROSSREFS
Cf. A000165, A001147(n+1), A002866(n+1).
Cf. A051577, A051578, A051579, A051580, A051581 (rows m=0..7), A051583.
Sequence in context: A366711 A034255 A363310 * A122420 A069671 A138445
KEYWORD
easy,nonn
STATUS
approved