login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122420
Number of labeled directed multigraphs with n arcs and with no vertex of indegree 0.
4
1, 0, 1, 10, 120, 1778, 31685, 661940, 15882128, 430607370, 13022755068, 434697574538, 15875944361864, 629756003982336, 26963278837704185, 1239382820431888898, 60875147436141987437, 3181961834442383306068
OFFSET
0,4
FORMULA
a(n) = (1/n!)*Sum_{k=0..n} |Stirling1(n,k)|*A122418(k). G.f.: A(x/(1-x)) where A(x) is g.f. for A122419.
a(n) ~ c * d^n * n! / sqrt(n), where d = A317855 = (1+exp(1/r))*r^2 = 3.161088653865428813830172202588132491726382774188556341627278..., r = 0.8737024332396683304965683047207192982139922672025395099... is the root of the equation exp(1/r)/r + (1+exp(1/r))*LambertW(-exp(-1/r)/r) = 0, and c = 0.1221803955695846906452721220983425... . - Vaclav Kotesovec, May 07 2014
MAPLE
A122418 := proc(n) option remember ; add( combinat[stirling2](n, k)*(k-1)^n*k!, k=0..n) ; end: A122420 := proc(n) option remember ; add( abs(combinat[stirling1](n, k))*A122418(k), k=0..n)/n! ; end: for n from 0 to 30 do printf("%d, ", A122420(n)) ; od ; # R. J. Mathar, May 18 2007
MATHEMATICA
Table[1/n!*Sum[Abs[StirlingS1[n, k]]*Sum[(m-1)^k*m!*StirlingS2[k, m], {m, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 07 2014 *)
CROSSREFS
Cf. A104209.
Sequence in context: A034255 A363310 A051582 * A069671 A138445 A138496
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Sep 03 2006
EXTENSIONS
More terms from R. J. Mathar, May 18 2007
STATUS
approved