login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of labeled directed multigraphs with n arcs and with no vertex of indegree 0.
4

%I #13 Aug 09 2018 09:46:31

%S 1,0,1,10,120,1778,31685,661940,15882128,430607370,13022755068,

%T 434697574538,15875944361864,629756003982336,26963278837704185,

%U 1239382820431888898,60875147436141987437,3181961834442383306068

%N Number of labeled directed multigraphs with n arcs and with no vertex of indegree 0.

%F a(n) = (1/n!)*Sum_{k=0..n} |Stirling1(n,k)|*A122418(k). G.f.: A(x/(1-x)) where A(x) is g.f. for A122419.

%F a(n) ~ c * d^n * n! / sqrt(n), where d = A317855 = (1+exp(1/r))*r^2 = 3.161088653865428813830172202588132491726382774188556341627278..., r = 0.8737024332396683304965683047207192982139922672025395099... is the root of the equation exp(1/r)/r + (1+exp(1/r))*LambertW(-exp(-1/r)/r) = 0, and c = 0.1221803955695846906452721220983425... . - _Vaclav Kotesovec_, May 07 2014

%p A122418 := proc(n) option remember ; add( combinat[stirling2](n,k)*(k-1)^n*k!,k=0..n) ; end: A122420 := proc(n) option remember ; add( abs(combinat[stirling1](n,k))*A122418(k),k=0..n)/n! ; end: for n from 0 to 30 do printf("%d, ",A122420(n)) ; od ; # _R. J. Mathar_, May 18 2007

%t Table[1/n!*Sum[Abs[StirlingS1[n,k]]*Sum[(m-1)^k*m!*StirlingS2[k,m],{m,0,k}],{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, May 07 2014 *)

%Y Cf. A104209.

%K easy,nonn

%O 0,4

%A _Vladeta Jovovic_, Sep 03 2006

%E More terms from _R. J. Mathar_, May 18 2007