login
A110926
Smaller of the pair of distinct numbers m and n such that sigma_2(m)=sigma_2(n), where sigma_2(n) is the sum of the squares of all divisors of n.
4
6, 24, 30, 40, 66, 78, 102, 114, 120, 120, 130, 136, 138, 150, 168, 174, 186, 186, 215, 222, 230, 246, 258, 264, 280, 280, 282, 318, 330, 354, 360, 366, 390, 402, 408, 408, 426, 430, 438, 440, 442, 456, 474, 498, 510, 520, 534, 552, 570, 582, 600, 606, 618
OFFSET
1,1
COMMENTS
There do not appear to be any pairs (m,n) such that sigma_k(m)=sigma_k(n) for k>2.
LINKS
FORMULA
sigma_2(m)=sigma_2(n), m<n.
EXAMPLE
sigma_2(30)=1^1+2^2+3^2+5^2+6^2+10^2+15^2+30^2=1300 and sigma_2(35)=1^2+5^2+7^2+35^2=1300.
MAPLE
with(numtheory); sigmap := proc(p, n) convert(map(proc(z) z^p end, divisors(n)), `+`) end; SA2:=[]: for z from 1 to 1 do for m to 1500 do M:=sigmap(2, m); for n from m+1 to 1500 do N:=sigmap(2, n); if N=M then SA2:=[op(SA2), [m, n, N]] fi od od od; SA2; select(proc(z) z[1]<=1000 end, SA2); #just to shorten it a bit
CROSSREFS
KEYWORD
nonn
AUTHOR
Walter Kehowski, Sep 23 2005
STATUS
approved