login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A110927
Larger of the pair of distinct numbers m and n such that sigma_2(m)=sigma_2(n), where sigma_2(n) is the sum of the squares of all divisors of n.
4
7, 26, 35, 47, 77, 91, 119, 133, 130, 141, 141, 157, 161, 175, 182, 203, 215, 217, 217, 259, 249, 287, 301, 286, 282, 329, 329, 371, 385, 413, 423, 427, 455, 469, 442, 471, 497, 434, 511, 517, 471, 494, 553, 581, 595, 611, 623, 598, 665, 679, 650, 707, 721
OFFSET
1,1
COMMENTS
There do not appear to be any pairs (m,n) such that sigma_k(m)=sigma_k(n) for k>2.
LINKS
FORMULA
sigma_2(m)=sigma_2(n), m<n.
EXAMPLE
sigma_2(30)=1^1+2^2+3^2+5^2+6^2+10^2+15^2+30^2=1300 and sigma_2(35)=1^2+5^2+7^2+35^2=1300.
MAPLE
with(numtheory); sigmap := proc(p, n) convert(map(proc(z) z^p end, divisors(n)), `+`) end; SA2:=[]: for z from 1 to 1 do for m to 1500 do M:=sigmap(2, m); for n from m+1 to 1500 do N:=sigmap(2, n); if N=M then SA2:=[op(SA2), [m, n, N]] fi od od od; SA2; select(proc(z) z[1]<=1000 end, SA2); #just to shorten it a bit
CROSSREFS
KEYWORD
nonn
AUTHOR
Walter Kehowski, Sep 23 2005
STATUS
approved