OFFSET
1,1
COMMENTS
a(n) is divisible by 24, and the positive squares A000290(n) are included in the sequence a(n)/24 = {1, 4, 5, 7, 9, 10, 14, 16, 18, 20, 25, 26, 28, 30, 32, 35, 36, 40, 45, 49, 55, 56, 63, 64, 65, ...}.
The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. The inradius r is given by r = A/s and the circumradius is given by R = abc/4A.
LINKS
Mohammad K. Azarian, Solution of problem 125: Circumradius and Inradius, Math Horizons, Vol. 16, No. 2 (Nov. 2008), p. 32.
Eric W. Weisstein, MathWorld: Circumradius
Eric W. Weisstein, MathWorld: Inradius
EXAMPLE
a(1) = 24 because, for (a,b,c) = (6, 8, 10) => s = (6 + 8 + 10)/2 = 12, and
A = sqrt(12(12-6)(12-8)(12-10)) = sqrt(576) = 24;
R = abc/4A = 480/4*24 = 5;
r = A/p = 24/12 = 2.
MAPLE
with(numtheory):T:=array(1..1000):k:=0:nn:=250: for a from 1
to nn do: for b from a to nn do: for c from b to nn do: p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c): if x>0 then s:=sqrt(x) :if s=floor(s) and irem(a*b*c, 4*s) = 0 and irem(s, p)=0 then k:=k+1:T[k]:= s: else fi:fi:od:od:od: L := [seq(T[i], i=1..k)]:L1:=convert(T, set):A:=sort(L1, `<`): print(A):
MATHEMATICA
nn = 1000; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]] && IntegerQ[a*b*c/(4* Sqrt[area2])] && IntegerQ[Sqrt[area2]/s], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Mar 04 2012
STATUS
approved