login
A185212
a(n) = 12*n^2 - 8*n + 1.
4
1, 5, 33, 85, 161, 261, 385, 533, 705, 901, 1121, 1365, 1633, 1925, 2241, 2581, 2945, 3333, 3745, 4181, 4641, 5125, 5633, 6165, 6721, 7301, 7905, 8533, 9185, 9861, 10561, 11285, 12033, 12805, 13601, 14421, 15265, 16133, 17025, 17941, 18881, 19845, 20833
OFFSET
0,2
COMMENTS
Sequence found by reading the line from 1, in the direction 1, 5, and the same line from 5, in the direction 5, 33, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, May 08 2018
FORMULA
a(n) = 4*A000567(n) + 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0)=1, a(1)=5, a(2)=33. - Harvey P. Dale, Jul 07 2015
G.f.: (-1 - 2*x - 21*x^2)/(-1+x)^3. - Harvey P. Dale, Jul 07 2015
E.g.f.: (12*x^2 + 4*x + 1)*exp(x). - G. C. Greubel, Jun 25 2017
a(n) = A016754(n-1) + 4*A000384(n). - Leo Tavares, May 21 2022
From Amiram Eldar, May 28 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(3)*Pi/8 - 3*log(3)/8 + 1.
Sum_{n>=0} (-1)^n/a(n) = Pi/8 - sqrt(3)*arccoth(sqrt(3))/2 + 1. (End)
MATHEMATICA
Table[12n^2-8n+1, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 5, 33}, 50] (* Harvey P. Dale, Jul 07 2015 *)
PROG
(Haskell)
a185212 = (+ 1) . (* 4) . a000567
(PARI) a(n)=12*n^2-8*n+1 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
For n > 0: odd terms in A001859.
Cf. A001082.
Sequence in context: A299518 A338342 A135111 * A250225 A250273 A050830
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Dec 20 2012
STATUS
approved