OFFSET
0,2
COMMENTS
Sequence found by reading the line from 1, in the direction 1, 5, and the same line from 5, in the direction 5, 33, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, May 08 2018
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Leo Tavares, Illustration: Square Block Rays
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 4*A000567(n) + 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0)=1, a(1)=5, a(2)=33. - Harvey P. Dale, Jul 07 2015
G.f.: (-1 - 2*x - 21*x^2)/(-1+x)^3. - Harvey P. Dale, Jul 07 2015
E.g.f.: (12*x^2 + 4*x + 1)*exp(x). - G. C. Greubel, Jun 25 2017
From Amiram Eldar, May 28 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(3)*Pi/8 - 3*log(3)/8 + 1.
Sum_{n>=0} (-1)^n/a(n) = Pi/8 - sqrt(3)*arccoth(sqrt(3))/2 + 1. (End)
MATHEMATICA
Table[12n^2-8n+1, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 5, 33}, 50] (* Harvey P. Dale, Jul 07 2015 *)
PROG
(Haskell)
a185212 = (+ 1) . (* 4) . a000567
(PARI) a(n)=12*n^2-8*n+1 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Dec 20 2012
STATUS
approved