|
|
A055521
|
|
Restricted left truncatable (Henry VIII) primes.
|
|
3
|
|
|
773, 3373, 3947, 4643, 5113, 6397, 6967, 7937, 15647, 16823, 24373, 33547, 34337, 37643, 56983, 57853, 59743, 62383, 63347, 63617, 69337, 72467, 72617, 75653, 76367, 87643, 92683, 97883, 98317, 121997, 124337, 163853, 213613, 236653
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
There are 1440 such primes, the largest being 357686312646216567629137.
Left-truncatable primes (A024785) which have at least two digits and are not the end of a larger left-truncatable prime. - Jens Kruse Andersen, Jul 29 2014
|
|
REFERENCES
|
Kahan, S. and Weintraub, S. "Left Truncatable Primes." J. Recr. Math. 29, 254-264, 1998.
|
|
LINKS
|
Jens Kruse Andersen, Table of n, a(n) for n = 1..1440 (complete sequence)
I. O. Angell, and H. J. Godwin, On Truncatable Primes, Math. Comput. 31, 265-267, 1977.
James Grime and Brady Haran, 357686312646216567629137, Numberphile video (2018)
Eric Weisstein's World of Mathematics, Truncatable Prime
Index entries for sequences related to truncatable primes
|
|
EXAMPLE
|
773 is in the sequence since 773, 73, 3 are primes, while no digit 1..9 gives a prime if placed before 773. 13 is not in the sequence since for example 113 is prime. 2 and 5 are disqualified for only having one digit. - Jens Kruse Andersen, Jul 29 2014
|
|
CROSSREFS
|
Cf. A024785.
Sequence in context: A133963 A133964 A033919 * A060825 A255156 A233991
Adjacent sequences: A055518 A055519 A055520 * A055522 A055523 A055524
|
|
KEYWORD
|
nonn,base,fini,full
|
|
AUTHOR
|
Eric W. Weisstein
|
|
STATUS
|
approved
|
|
|
|