login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140163
a(1)=1, a(n) = a(n-1) + n^5 if n odd, a(n) = a(n-1) + n if n is even.
2
1, 3, 246, 250, 3375, 3381, 20188, 20196, 79245, 79255, 240306, 240318, 611611, 611625, 1371000, 1371016, 2790873, 2790891, 5266990, 5267010, 9351111, 9351133, 15787476, 15787500, 25553125, 25553151, 39902058, 39902086, 60413235
OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-15,15,20,-20,-15,15,6,-6, -1,1).
FORMULA
G.f.: -x*(1 + 2*x + 237*x^2 - 8*x^3 + 1682*x^4 + 12*x^5 + 1682*x^6 - 8*x^7 + 237*x^8 + 2*x^9 + x^10)/((1+x)^6*(x-1)^7). - R. J. Mathar, Feb 22 2009
a(n) = (1/24)*(n + n^2)*(6*(1 + (-1)^n) - (1 - 9*(-1)^n)*n + (1 - 9*(-1)^n)*n^2 + (4 - 6*(-1)^n)*n^3 + 2*n^4). - G. C. Greubel, Jul 05 2018
MAPLE
a:=proc(n) option remember: if n=1 then 1 elif modp(n, 2)<>0 then procname(n-1)+n^5 else procname(n-1)+n; fi: end; seq(a(n), n=1..30); # Muniru A Asiru, Jul 07 2018
MATHEMATICA
Table[(1/24)*(n +n^2)*(6*(1 +(-1)^n) - (1-9*(-1)^n)*n + (1 -9*(-1)^n)*n^2 + (4 -6*(-1)^n)*n^3 + 2*n^4), {n, 1, 50}] (* or *) LinearRecurrence[{1, 6, -6, -15, 15, 20, -20, -15, 15, 6, -6, -1, 1}, {1, 3, 246, 250, 3375, 3381, 20188, 20196, 79245, 79255, 240306, 240318, 611611}, 60] (* G. C. Greubel, Jul 05 2018 *)
PROG
(PARI) for(n=1, 50, print1((1/24)*(n +n^2)*(6*(1 +(-1)^n) - (1-9*(-1)^n)*n + (1 -9*(-1)^n)*n^2 + (4 -6*(-1)^n)*n^3 + 2*n^4), ", ")) \\ G. C. Greubel, Jul 05 2018
(Magma) [(1/24)*(n +n^2)*(6*(1 +(-1)^n) - (1-9*(-1)^n)*n + (1 -9*(-1)^n)*n^2 + (4 -6*(-1)^n)*n^3 + 2*n^4): n in [1..50]]; // G. C. Greubel, Jul 05 2018
KEYWORD
nonn
AUTHOR
Artur Jasinski, May 12 2008
STATUS
approved