login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = cosh( (2n - 1)*arcsinh(sqrt(2)) )^2 = 1 - cos( (2n - 1)*arcsin(sqrt(3)) )^2.
25

%I #22 Jul 01 2017 02:16:38

%S 3,243,23763,2328483,228167523,22358088723,2190864527283,

%T 214682365584963,21036680962799043,2061380051988721203,

%U 201994208413931878803,19793371044513335401443,1939548368153892937462563,190055946708036994535929683,18623543229019471571583646323

%N a(n) = cosh( (2n - 1)*arcsinh(sqrt(2)) )^2 = 1 - cos( (2n - 1)*arcsin(sqrt(3)) )^2.

%H G. C. Greubel, <a href="/A146313/b146313.txt">Table of n, a(n) for n = 1..500</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (99,-99,1).

%F a(n) = A146312(n) + 1.

%F a(n) = sin((2n-1)*arcsin(sqrt(3)))^2 = 1+sinh((2n-1)*arcsinh(sqrt(2)))^2. - _Artur Jasinski_, Oct 30 2008

%F a(n) = 99*a(n-1)-99*a(n-2)+a(n-3). - _Colin Barker_, Oct 26 2014

%F G.f.: -3*x*(x^2-18*x+1) / ((x-1)*(x^2-98*x+1)). - _Colin Barker_, Oct 26 2014

%p A146313 := proc(n) cosh( (2*n - 1)*arcsinh(sqrt(2)) )^2; expand(%) ; simplify(%) ; end proc: # _R. J. Mathar_, Feb 26 2011

%t Table[Round[N[Cosh[(2 n - 1) ArcSinh[Sqrt[2]]], 300]^2], {n, 1, 50}] (* _Artur Jasinski_, Oct 30 2008 *)

%o (PARI) Vec(-3*x*(x^2-18*x+1) / ((x-1)*(x^2-98*x+1)) + O(x^100)) \\ _Colin Barker_, Oct 26 2014

%Y Cf. A146311, A146312.

%K nonn,easy

%O 1,1

%A _Artur Jasinski_, Oct 29 2008

%E More terms from _Colin Barker_, Oct 26 2014