login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198440 Square root of second term of a triple of squares in arithmetic progression that is not a multiple of another triple in (A198384, A198385, A198386). 5
5, 13, 17, 25, 29, 37, 41, 61, 53, 65, 65, 85, 73, 85, 89, 101, 113, 97, 109, 125, 145, 145, 149, 137, 181, 157, 173, 197, 185, 169, 221, 185, 193, 205, 229, 257, 265, 205, 221, 233, 241, 269, 313, 265, 293, 325, 277, 317, 281, 365, 289, 305, 305, 365, 401 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A198436(n) = a(n)^2; a(n) = A198389(A198409(n)).

This sequence gives the hypotenuses of primitive Pythagorean triangles (with multiplicities) ordered according to nondecreasing values of the leg sums x+y (called w in the Zumkeller link, given by A198441). See the comment on the equivalence to primitive Pythagorean triangles in A198441. For the values of these hypotenuses ordered nondecreasingly see A020882. See also the triangle version A222946. - Wolfdieter Lang, May 23 2013

LINKS

Ray Chandler, Table of n, a(n) for n = 1..10000

Reinhard Zumkeller, Table of initial values

Keith Conrad, Arithmetic progressions of three squares

EXAMPLE

From Wolfdieter Lang, May 22 2013: (Start)

Primitive Pythagorean triangle (x,y,z), even y, connection:

a(8) = 61 because the leg sum x+y = A198441(8) = 71 and due to A198439(8) = 49 one has y = (71+49)/2 = 60 is even, hence x = (71-49)/2 = 11 and z = sqrt(11^2 + 60^2) = 61. (End)

PROG

(Haskell)

a198440 n = a198440_list !! (n-1)

a198440_list = map a198389 a198409_list

CROSSREFS

Cf. A020882, A222946.

Sequence in context: A008846 A162597 A120960 * A094194 A088511 A089545

Adjacent sequences:  A198437 A198438 A198439 * A198441 A198442 A198443

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, Oct 25 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 06:20 EDT 2021. Contains 343814 sequences. (Running on oeis4.)