OFFSET
1,1
COMMENTS
Apart from its initial 1, A001653 is a subsequence: for all n>1 exists an m such that A198388(m)=1 and a(m)=A001653(n). [observed by Zak Seidov, Reinhard Zumkeller, Oct 25 2011]
There is a connection to hypotenuses of Pythagorean triangles. See a comment for the primitive case on A198441 which applies here mutatis mutandis. - Wolfdieter Lang, May 23 2013
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000
Reinhard Zumkeller, Table of initial values
Keith Conrad, Arithmetic progressions of three squares
EXAMPLE
Connection to Pythagorean triangle hypotenuses: a(20) = 10 because (in the notation of the Zumkeller link) (u,v,w) = 2*(1,5,7) and the Pythagorean triangle is 2*(x=(7-1)/2,y=(1+7)/2,5) = 2*(3,4,5) with hypotenuse 2*5 = 10. - Wolfdieter Lang, May 23 2013
MATHEMATICA
wmax = 1000;
triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]];
Flatten[DeleteCases[triples /@ Range[wmax], {}], 2][[All, 2]] (* Jean-François Alcover, Oct 20 2021 *)
PROG
(Haskell)
a198389 n = a198389_list !! (n-1)
a198389_list = map (\(_, x, _) -> x) ts where
ts = [(u, v, w) | w <- [1..], v <- [1..w-1], u <- [1..v-1],
w^2 - v^2 == v^2 - u^2]
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 24 2011
STATUS
approved