OFFSET
1,1
COMMENTS
There is a connection to the leg sums of Pythagorean triangles.
See a comment on the primitive case under A198439, which applies mutatis mutandis. - Wolfdieter Lang, May 23 2013
Are these just the positive multiples of A001132? - Charles R Greathouse IV, May 28 2013
n appears A331671(n) times. - Ray Chandler, Feb 26 2020
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000
Keith Conrad, Arithmetic progressions of three squares
Reinhard Zumkeller, Table of initial values
EXAMPLE
Connection to leg sums of Pythagorean triangles: a(2) = 14 because (in the notation of the Zumkeller link) (u,v,w)= (2,10,14) = 2*(1,5,7), and this corresponds to the non-primitive Pythagorean triangle 2*(x=(7-1)/1,y=(1+7)/2,z=5) = 2*(3,4,5) with leg sum 2*(3+4) = 14. - Wolfdieter Lang, May 23 2013
MATHEMATICA
wmax = 1000;
triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]];
Flatten[DeleteCases[triples /@ Range[wmax], {}], 2][[All, 3]] (* Jean-François Alcover, Oct 20 2021 *)
PROG
(Haskell)
a198390 n = a198390_list !! (n-1)
a198390_list = map (\(_, _, x) -> x) ts where
ts = [(u, v, w) | w <- [1..], v <- [1..w-1], u <- [1..v-1],
w^2 - v^2 == v^2 - u^2]
(PARI) is(n)=my(t=n^2); forstep(i=2-n%2, n-2, 2, if(issquare((t+i^2)/2), return(1))); 0 \\ Charles R Greathouse IV, May 28 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 24 2011
STATUS
approved