login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257224
Numbers that have at least one divisor containing the digit 7 in base 10.
7
7, 14, 17, 21, 27, 28, 34, 35, 37, 42, 47, 49, 51, 54, 56, 57, 63, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 84, 85, 87, 91, 94, 97, 98, 102, 105, 107, 108, 111, 112, 114, 117, 119, 126, 127, 133, 134, 135, 136, 137, 140, 141, 142, 144, 146, 147, 148
OFFSET
1,1
COMMENTS
Numbers k whose concatenation of divisors A037278(k), A176558(k), A243360(k) or A256824(k) contains a digit 7.
A011537 (numbers that contain a 7) is a subsequence. - Michel Marcus, May 25 2015
FORMULA
a(n) ~ n.
EXAMPLE
14 is in sequence because the list of divisors of 14: (1, 2, 7, 14) contains digit 7.
MATHEMATICA
Select[Range@108, Part[Plus @@ DigitCount@ Divisors@ #, 7] > 0 &]
PROG
(Magma) [n: n in [1..1000] | [7] subset Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))]
(PARI) is(n)=fordiv(n, d, if(setsearch(Set(digits(d)), 7), return(1))); 0
(Python)
from itertools import count, islice
from sympy import divisors
def A257224_gen(): return filter(lambda n:any('7' in str(d) for d in divisors(n, generator=True)), count(1))
A257224_list = list(islice(A257224_gen(), 20)) # Chai Wah Wu, Dec 27 2021
CROSSREFS
Cf. similar sequences with another digit: A209932 (0), A000027 (1), A257219 (2), A257220 (3), A257221 (4), A257222 (5), A257223 (6), A257225 (8), A257226 (9).
Sequence in context: A198390 A118905 A254064 * A376046 A092433 A056203
KEYWORD
nonn,base
AUTHOR
Jaroslav Krizek, May 05 2015
EXTENSIONS
Mathematica and PARI programs with assistance from Michael De Vlieger and Charles R Greathouse IV, respectively.
STATUS
approved