OFFSET
1,2
COMMENTS
There is a connection to |x-y| of Pythagorean triangles (x,y,z). See a comment on the primitive Pythagorean triangle case under A198441 which applies mutatis mutandis. - Wolfdieter Lang, May 23 2013
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000
Keith Conrad, Arithmetic progressions of three squares
Reinhard Zumkeller, Table of initial values
EXAMPLE
Connection to Pythagorean triangles: a(2) = 2 because (in the notation of the Zumkeller link) (u,v,w) = 2*(1,5,7) and the corresponding Pythagorean triangle is 2*((7-1)/2,(1+7)/2,5) = 2*(3,4,5) with |x-y| = 2*(4-3) = 2. - Wolfdieter Lang, May 23 2013
MATHEMATICA
wmax = 1000;
triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]];
Flatten[DeleteCases[triples /@ Range[wmax], {}], 2][[All, 1]] (* Jean-François Alcover, Oct 20 2021 *)
PROG
(Haskell)
a198388 n = a198388_list !! (n-1)
a198388_list = map (\(x, _, _) -> x) ts where
ts = [(u, v, w) | w <- [1..], v <- [1..w-1], u <- [1..v-1],
w^2 - v^2 == v^2 - u^2]
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 24 2011
STATUS
approved