login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175685
Array a(n,m) = Sum_{j=floor((n-1)/2)-m..floor(n-1)/2} binomial(n-j-1,j) read by antidiagonals.
3
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 2, 1, 1, 3, 4, 3, 2, 1, 1, 1, 7, 5, 3, 2, 1, 1, 4, 7, 8, 5, 3, 2, 1, 1, 1, 14, 12, 8, 5, 3, 2, 1, 1
OFFSET
1,7
COMMENTS
A102426 defines an array of binomials in which partial sums of row n yield row a(n,.).
REFERENCES
Burton, David M., Elementary number theory, McGraw Hill, N.Y., 2002, p. 286.
EXAMPLE
a(n,m) starts in row n=1 as
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...
2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
1, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, ...
3, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, ...
1, 7, 12, 13, 13, 13, 13, 13, 13, 13, 13, ...
4, 14, 20, 21, 21, 21, 21, 21, 21, 21, 21, ...
1, 11, 26, 33, 34, 34, 34, 34, 34, 34, 34, ...
MAPLE
A175685 := proc(n, m) upl := floor( (n-1)/2) ; add( binomial(n-j-1, j), j=upl-m .. upl) ; end proc: # R. J. Mathar, Dec 05 2010
MATHEMATICA
a = Table[Table[Sum[Binomial[n -j - 1, j], {j, Floor[(n - 1)/2] - m, Floor[(n - %t 1)/2]}], {n, 0, 10}], {m, 0, 10}];
Table[Table[a[[m, n - m + 1]], {m, 1, n - 1}], {n, 1, 10}]; Flatten[%]
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Dec 04 2010
STATUS
approved