Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 08 2022 08:45:47
%S 1,7,42,238,1316,7196,39144,212408,1151248,6236272,33772704,182873824,
%T 990172736,5361148352,29026768512,157158071168,850889810176,
%U 4606905485056,24942786537984,135045615513088,731165912572928
%N a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 1, a(1) = 7.
%C Binomial transform of A081179 without initial 0. Inverse binomial transform of A164031.
%H G. C. Greubel, <a href="/A164072/b164072.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-14).
%F a(n) = ((2+3*sqrt(2))*(4+sqrt(2))^n + (2-3*sqrt(2))*(4-sqrt(2))^n)/4.
%F G.f.: (1-x)/(1-8*x+14*x^2).
%F E.g.f.: (cosh(sqrt(2)*x) + (3*sqrt(2)/2)*sinh(sqrt(2)*x))*exp(4*x). - _G. C. Greubel_, Sep 09 2017
%t CoefficientList[Series[(1 - x)/(1 - 8*x + 14*x^2), {x,0,50}], x] (* or *) LinearRecurrence[{8,-14}, {1,7}, 50] (* _G. C. Greubel_, Sep 09 2017 *)
%o (Magma) [ n le 2 select 6*n-5 else 8*Self(n-1)-14*Self(n-2): n in [1..21] ];
%o (PARI) x='x+O('x^50); Vec((1-x)/(1-8*x+14*x^2)) \\ _G. C. Greubel_, Sep 09 2017
%Y Cf. A081179, A164031.
%K nonn
%O 0,2
%A _Klaus Brockhaus_, Aug 09 2009