login
A297395
T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1 neighboring 1.
12
1, 2, 1, 3, 5, 1, 4, 9, 9, 1, 6, 13, 19, 20, 1, 9, 33, 37, 57, 41, 1, 13, 69, 127, 126, 139, 85, 1, 19, 121, 323, 700, 385, 369, 178, 1, 28, 253, 763, 2569, 3175, 1243, 963, 369, 1, 41, 529, 2121, 7779, 14940, 15541, 3924, 2489, 769, 1, 60, 1013, 5557, 31081, 58901, 99682
OFFSET
1,2
COMMENTS
Table starts
.1...2....3.....4.......6........9........13.........19...........28
.1...5....9....13......33.......69.......121........253..........529
.1...9...19....37.....127......323.......763.......2121.........5557
.1..20...57...126.....700.....2569......7779......31081.......117084
.1..41..139...385....3175....14940.....58901.....325922......1616869
.1..85..369..1243...15541....99682....514945....3977868.....27131403
.1.178..963..3924...74736...640562...4279111...46261441....428200086
.1.369.2489.12477..358341..4101278..35870939..540319235...6780786267
.1.769.6523.39625.1729617.26607999.302197213.6362528482.108762242579
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +2*a(n-2) +a(n-3) -a(n-4)
k=3: a(n) = a(n-1) +4*a(n-2) +2*a(n-3) -4*a(n-4)
k=4: a(n) = a(n-1) +6*a(n-2) +4*a(n-3) -3*a(n-4) -a(n-5) -2*a(n-6) -a(n-7)
k=5: [order 20]
k=6: [order 25]
k=7: [order 55]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-3)
n=2: a(n) = a(n-1) +4*a(n-3)
n=3: a(n) = a(n-1) +a(n-2) +8*a(n-3) +a(n-4) -2*a(n-6)
n=4: [order 8]
n=5: [order 21]
n=6: [order 31]
n=7: [order 69]
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..1. .0..1..1..0. .0..1..0..0. .0..0..1..1. .0..0..0..0
..0..0..0..0. .0..0..0..0. .1..0..0..0. .0..0..0..0. .0..0..1..0
..0..1..1..0. .0..0..0..0. .0..0..0..0. .0..0..1..0. .0..0..0..1
..0..0..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..1. .0..1..0..0
..0..0..1..1. .0..0..1..0. .1..1..0..0. .0..0..0..0. .1..0..0..0
CROSSREFS
Column 2 is A105309(n+1).
Row 1 is A000930(n+1).
Row 2 is A089977(n+1).
Sequence in context: A047997 A188211 A175009 * A297595 A049069 A030237
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 29 2017
STATUS
approved