Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #75 May 31 2024 14:41:46
%S 1,0,3,6,21,60,183,546,1641,4920,14763,44286,132861,398580,1195743,
%T 3587226,10761681,32285040,96855123,290565366,871696101,2615088300,
%U 7845264903,23535794706,70607384121,211822152360,635466457083
%N Number of closed walks of length n along the edges of a tetrahedron based at a vertex.
%C Number of closed walks of length n at a vertex of C_4, the cyclic graph on 4 nodes. 3*A015518(n) + a(n) = 3^n. - _Paul Barry_, Feb 03 2004
%C Form the digraph with matrix A = [0,1,1,1; 1,0,1,1; 1,1,0,1; 1,0,1,1]; a(n) corresponds to the (1,1) term of A^n. - _Paul Barry_, Oct 02 2004
%C Absolute values of A084567 (compare generating functions).
%C For n > 1, 4*a(n)=A218034(n)= the trace of the n-th power of the adjacency matrix for a complete 4-graph, a 4 X 4 matrix with a null diagonal and all ones for off-diagonal elements. The diagonal elements for the n-th power are a(n) and the off-diagonal are a(n)+1 for an odd power and a(n)-1 for an even (cf. A001045). - _Tom Copeland_, Nov 06 2012
%H Vincenzo Librandi, <a href="/A054878/b054878.txt">Table of n, a(n) for n = 0..1000</a>
%H Ji Young Choi, <a href="https://www.emis.de/journals/JIS/VOL21/Choi/choi10.html">A Generalization of Collatz Functions and Jacobsthal Numbers</a>, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
%H M. Dukes and C. D. White, <a href="http://arxiv.org/abs/1603.01589">Web Matrices: Structural Properties and Generating Combinatorial Identities</a>, arXiv:1603.01589 [math.CO], 2016.
%H R. J. Mathar, <a href="/A102518/a102518.pdf">Counting Walks on Finite Graphs</a>, (Nov 2020), Section 2.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,3).
%F a(n) = (3^n + (-1)^n*3)/4.
%F G.f.: 1/4*(3/(1+x) + 1/(1-3*x)).
%F E.g.f.: (exp(3*x) + 3*exp(-x))/4. - _Paul Barry_, Apr 20 2003
%F a(n) = 3^n - a(n-1) with a(0)=0. - _Labos Elemer_, Apr 26 2003
%F G.f.: (1 - 3*x^2 - 2*x^3)/(1 - 6*x^2 - 8*x^3 - 3*x^4) = (1 - 3*x^2 - 2*x^3)/charpoly(adj(C_4)). - _Paul Barry_, Feb 03 2004
%F From _Paul Barry_, Oct 02 2004: (Start)
%F G.f.: (1-2*x)/(1 - 2*x - 3*x^2).
%F a(n) = 2*a(n-1) + 3*a(n-2). (End)
%F G.f.: 1 - x + x/Q(0), where Q(k) = 1 + 3*x^2 - (3*k+4)*x + x*(3*k+1 - 3*x)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Oct 07 2013
%F a(n+m) = a(n)*a(m) + a(n+1)*a(m+1)/3. - _Yuchun Ji_, Sep 12 2017
%F a(n) = 3*a(n-1) + 3*(-1)^n. - _Yuchun Ji_, Sep 13 2017
%F From _Peter Bala_, May 28 2024: (Start)
%F a(n) = (-1)^n + Sum_{k = 1..n} (-1)^(n-k)*binomial(n, k)*4^(k-1).
%F G.f.: A(x) = 1/(1 - x^2) o 1/(1 - x^2), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A015575.
%F The black diamond product A(x) o A(x) is the g.f. for the number of closed walks of length n at a vertex along the edges of the 15-simplex. (End)
%p A054878:=n->(3^n + (-1)^n*3)/4: seq(A054878(n), n=0..50); # _Wesley Ivan Hurt_, Sep 16 2017
%t Table[(3^n + (-1)^n*3)/4, {n, 0, 26}] (* or *)
%t CoefficientList[Series[1/4*(3/(1 + x) + 1/(1 - 3 x)), {x, 0, 26}], x] (* _Michael De Vlieger_, Sep 15 2017 *)
%o (Magma) [(3^n+(-1)^n*3)/4: n in [0..35]]; // _Vincenzo Librandi_, Jun 30 2011
%o (PARI) a(n) = (3^n + 3*(-1)^n)/4; \\ _Altug Alkan_, Sep 17 2017
%Y Row n=4 of A109502. A084567 (signed version).
%Y {a(n)/3} for n>0 is A015518, non-closed walks.
%Y Cf. A001045, A078008, A097073, A115341, A015518 (sequences where a(n)=3^n-a(n-1)). - _Vladimir Joseph Stephan Orlovsky_, Dec 11 2008
%K nonn,walk,easy
%O 0,3
%A Paolo Dominici (pl.dm(AT)libero.it), May 23 2000