login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261582
Expansion of Product_{k>=1} 1/(1 + 3*x^k).
8
1, -3, 6, -21, 69, -201, 591, -1785, 5406, -16194, 48426, -145380, 436641, -1309611, 3927399, -11783280, 35354139, -106059387, 318165729, -954506190, 2863556475, -8590643832, 25771817454, -77315531169, 231946940175, -695840583126, 2087520715788, -6262562872614
OFFSET
0,2
LINKS
FORMULA
a(n) ~ c * (-3)^n, where c = Product_{j>=1} 1/(1-1/(-3)^j) = 1/QPochhammer[-1/3,-1/3] = 0.8212554466473167689981660621182786378...
G.f.: Sum_{i>=0} (-3)^i*x^i/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 13 2018
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[1/(1 + 3*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^k*3^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x]
(O[x]^30 + 4/QPochhammer[-3, x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Vaclav Kotesovec, Aug 25 2015
STATUS
approved