login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094231
Lesser member p of sexy primes (p, p+6) such that (p+1, p+2, p+3, p+4, p+5) all have the same number of prime divisors (counted with multiplicity).
1
601, 42181, 70201, 240953, 277493, 414361, 418793, 619813, 632147, 637073, 723161, 732233, 739433, 761393, 781961, 879001, 934481, 979201, 1154233, 1320721, 1327673, 1357673, 1611361, 1685521, 1866233, 1877833, 1950457
OFFSET
1,1
LINKS
EXAMPLE
42181 is a term because 42181 and 42187 are sexy primes while 42182-42186 each have 4 prime divisors (counting multiplicity).
MATHEMATICA
Select[Range[2*10^6], AllTrue[{#, #+6}, PrimeQ]&&Length[Union[ PrimeOmega[ Range[ #+1, #+5]]]]==1&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 16 2015 *)
PROG
(Magma) f:=func<n|&+[p[2]: p in Factorization(n)]>; [p:p in PrimesUpTo(2000000)| IsPrime(p+6) and forall{k:k in [2..5]|f(p+k) eq f(p+1)} ]; // Marius A. Burtea, Dec 16 2019
CROSSREFS
Sequence in context: A302559 A232073 A278206 * A292069 A107440 A218055
KEYWORD
easy,nonn
AUTHOR
Jason Earls, May 29 2004
STATUS
approved