login
A046117
Primes p such that p-6 is also prime. (Upper of a pair of sexy primes.)
68
11, 13, 17, 19, 23, 29, 37, 43, 47, 53, 59, 67, 73, 79, 89, 103, 107, 109, 113, 137, 157, 163, 173, 179, 197, 199, 229, 233, 239, 257, 263, 269, 277, 283, 313, 317, 337, 353, 359, 373, 379, 389, 439, 449, 463, 467, 509, 547, 563, 569, 577, 593, 599, 607, 613
OFFSET
1,1
LINKS
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
Eric Weisstein's World of Mathematics, Sexy Primes. [The definition in this webpage is unsatisfactory, because it defines a "sexy prime" as a pair of primes.- N. J. A. Sloane, Mar 07 2021].
FORMULA
a(n) = A087695(n) + 3.
a(n) = A023201(n) + 6. - M. F. Hasler, Jan 02 2020
MATHEMATICA
q=6; a={}; Do[p1=Prime[n]; p2=p1+q; If[PrimeQ[p2], AppendTo[a, p2]], {n, 7^2}]; a "and/or" Select[Prime[Range[3, 7^2]], PrimeQ[ # ]&&PrimeQ[ #-6]&] (* Vladimir Joseph Stephan Orlovsky, Aug 07 2008 *)
Select[Prime[Range[4, 200]], PrimeQ[#-6]&] (* Harvey P. Dale, Mar 31 2018 *)
PROG
(PARI) forprime(p=2, 1e4, if(isprime(p-6), print1(p", "))) \\ Charles R Greathouse IV, Jul 15 2011
(Magma) [p:p in PrimesInInterval(7, 650)| IsPrime(p-6)]; // Marius A. Burtea, Jan 03 2020
CROSSREFS
KEYWORD
nonn,changed
EXTENSIONS
Name edited by M. F. Hasler, Jan 02 2020
STATUS
approved