OFFSET
1,1
COMMENTS
The numbers < 10 have persistence 0. - T. D. Noe, Nov 23 2011
Also: Primes having either at least one digit "0", or any number of digits "1" and product of digits > 1 less than 10 (i.e., among {2, ..., 9, 2*2, 2*3, 2*4, 3*3, 2*2*2}). Terms without a digit "0" and such that deleting some digits "1" never yields an earlier term could be called "primitive". There are only finitely many such elements. If the terms < 10 are ignored, the primitive elements are 11, ..., 71, 151, 181, 211, 241, 313, 421, 811, 911, ... - M. F. Hasler, Sep 25 2012
LINKS
Daniel Mondot, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Multiplicative Persistence
EXAMPLE
181 -> 1*8*1 = 8; one digit in one step.
MATHEMATICA
Select[Prime[Range[179]], IntegerLength[Times @@ IntegerDigits[#]] <= 1 &] (* Jayanta Basu, Jun 26 2013 *)
PROG
(PARI) is_A046501(n)={isprime(n) || return; my(P=n%10); while(P & n\=10, (P*=n%10)>9 & return); 1} \\ M. F. Hasler, Sep 25 2012
(Python)
from math import prod
from sympy import isprime
def ok(n): return n > 9 and prod(map(int, str(n))) < 10 and isprime(n)
print([k for k in range(1088) if ok(k)]) # Michael S. Branicky, Mar 14 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Sep 15 1998
EXTENSIONS
Numbers < 10 removed, as they have a multiplicative persistence of 0, by Daniel Mondot, Mar 14 2022
STATUS
approved