login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094228 Let s = -sqrt(2)*sqrt(n)*sqrt(1+I*n/(2*Pi))-n*log(n); then a(n) = floor(Re(-s)). 1
1, 3, 5, 8, 11, 14, 17, 21, 24, 28, 32, 35, 39, 43, 47, 52, 56, 60, 64, 69, 73, 78, 82, 87, 91, 96, 101, 105, 110, 115, 120, 124, 129, 134, 139, 144, 149, 154, 159, 164, 169, 175, 180, 185, 190, 195, 200, 206, 211, 216, 222, 227, 232, 238, 243, 249, 254, 259, 265, 270 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A prime-like asymptotic sequence based on zeta zero Hermite Hilbert space.

The Hermite wave function Phi[n,s]=HermiteH[n,s]*Exp[ -s^2/(4*n)]*(1+I)/(Sqrt[2]*n^(s/2)) doesn't give a good solution.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

MATHEMATICA

s=-Sqrt[2]*Sqrt[n]*Sqrt[1+I*n/(2*Pi)]-n*Log[n] a=Table[Floor[Re[ -s]], {n, 1, 200}]

CROSSREFS

Sequence in context: A084555 A102696 A130262 * A278586 A001855 A006591

Adjacent sequences:  A094225 A094226 A094227 * A094229 A094230 A094231

KEYWORD

nonn

AUTHOR

Roger L. Bagula, May 28 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 03:01 EST 2018. Contains 317427 sequences. (Running on oeis4.)