Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Feb 05 2023 09:23:14
%S 1,0,0,0,-2,0,6,0,-24,0,120,40,0,-720,-420,0,5040,3948,0,-40320,
%T -38304,-2240,0,362880,396576,50400
%N Triangular sequence from expansion coefficients of asymptotic Hermite Polynomial from Roman: p(x,t)= (1 + t)^(-x)*Exp[x*(t - t^2/2)].
%C Absolute values of row sums give A038205.
%D Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page 130.
%F p(x,t)= (1 + t)^(-x)*Exp[x*(t - t^2/2)]=Sum[q(x,n)*t^n/n!,{n,0,Infinity}]; out(n,m)=n!*Coefficients(q(x,n)).
%e {1},
%e {0},
%e {0},
%e {0, -2},
%e {0, 6},
%e {0, -24},
%e {0, 120, 40},
%e {0, -720, -420},
%e {0, 5040, 3948},
%e {0, -40320, -38304, -2240},
%e {0, 362880, 396576, 50400}
%t p[t_] := (1 + t)^(-x)*Exp[x*(t - t^2/2)];
%t Table[ ExpandAll[n!SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}];
%t a = Table[n!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}];
%t Flatten[{{1}, {0}, {0}, {0, -2}, {0, 6}, {0, -24}, {0, 120, 40}, {0, -720, -420}, {0, 5040, 3948}, {0, -40320, -38304, -2240}, {0, 362880, 396576, 50400}}]
%Y Cf. A038205, A137286.
%K uned,tabf,sign
%O 1,5
%A _Roger L. Bagula_, Apr 21 2008