The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199573 Number of round trips of length n from any of the four vertices of the cycle graph C_4. 1
 1, 0, 2, 0, 8, 0, 32, 0, 128, 0, 512, 0, 2048, 0, 8192, 0, 32768, 0, 131072, 0, 524288, 0, 2097152, 0, 8388608, 0, 33554432, 0, 134217728, 0, 536870912, 0, 2147483648, 0, 8589934592, 0, 34359738368, 0, 137438953472, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS See the array w(N,L) and the triangle a(K,N) given in A199571. Essentially the same as A103424. This is A081294 and A000004 interleaved. - Omar E. Pol, Nov 09 2011 LINKS R. J. Mathar, Counting Walks on Finite Graphs, Section 1. Index entries for linear recurrences with constant coefficients, signature (0,4). FORMULA a(n) =  2^(n-2)*(1+(-1)^n), n>=2, a(0)=1. O.g.f.: (1-2*x^2)/(1-(2*x)^2). E.g.f.: 1+(1 + 2*x^2/(U(0) - 2*x^2 + 1))*x^2 where U(k)=  4*k+5 + 2*x^2/(1 + (2*k+3)*(k+2)/U(k+1)) ; (continued fraction, 3rd kind, 2-step). - Sergei N. Gladkovskii, Oct 28 2012 EXAMPLE a(4)=8 from the eight round trips of length 4 (starting from, say, vertex no. 1): 12121, 14141, 12141, 14121, 12321, 14341, 12341 and 14321. MATHEMATICA CoefficientList[Series[(1 - 2 x^2)/(1 - (2 x)^2), {x, 0, 40}], x] (* or *) Riffle[Join[{1}, NestList[4#&, 2, 20]], 0] (* or *) LinearRecurrence[ {0, 4}, {1, 0, 2}, 80] (* Harvey P. Dale, Dec 04 2015 *) CROSSREFS Cf. A078008 (N=3), A054877 (N=5), A199571. Sequence in context: A053205 A167029 A094030 * A103424 A347596 A211163 Adjacent sequences:  A199570 A199571 A199572 * A199574 A199575 A199576 KEYWORD nonn,easy,walk AUTHOR Wolfdieter Lang, Nov 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 08:04 EDT 2021. Contains 347556 sequences. (Running on oeis4.)