login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199576
E.g.f. satisfies: A(x) = 1 + Sum_{n>=1} 2*cosh(n*x) * (x*A(x))^(n^2).
2
1, 2, 8, 54, 528, 7690, 159360, 4158014, 124676608, 4135694994, 150596213760, 6039479167942, 267570859708416, 13065427748191130, 697795440530685952, 40363581479632997070, 2506569447568159211520, 166039728985388864259874, 11683091140202632175419392
OFFSET
0,2
LINKS
FORMULA
E.g.f. satisfies: A(x) = Product_{n>=1} (1 - (x*A(x))^(2*n))*(1 + (x*A(x))^(2*n-1)*exp(x))*(1 + (x*A(x))^(2*n-1)/exp(x)), due to the Jacobi triple product identity.
a(n) ~ c * d^n * n! / n^(3/2), where d = 4.245909... and c = 0.72689... - Vaclav Kotesovec, Sep 04 2017
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 8*x^2/2! + 54*x^3/3! + 528*x^4/4! + 7690*x^5/5! +...
The e.g.f. A = A(x) may be expressed by the series:
A(x) = 1 + 2*cosh(x)*x*A + 2*cosh(2*x)*(x*A)^4 + 2*cosh(3*x)*(x*A)^9 + 2*cosh(4*x)*(x*A)^16 + 2*cosh(5*x)*(x*A)^25 +...
and by the Jacobi triple product:
A(x) = (1-(x*A)^2)*(1+x*A*exp(x))*(1+x*A/exp(x)) * (1-(x*A)^4)*(1+(x*A)^3*exp(x))*(1+(x*A)^3/exp(x)) * (1-(x*A)^6)*(1+(x*A)^5*exp(x))*(1+(x*A)^5/exp(x)) * (1-(x*A)^8)*(1+(x*A)^7*exp(x))*(1+(x*A)^7/exp(x)) *...
MATHEMATICA
(* Calculation of constant d: *) 1/r /. FindRoot[{E^r * r^2*s*QPochhammer[-1/(E^r * r*s), r^2*s^2] * QPochhammer[-E^r / (r*s), r^2*s^2] * QPochhammer[r^2*s^2, r^2*s^2] == (E^r + r*s)*(1 + E^r * r*s), -2*QPolyGamma[0, 1, r^2*s^2] / Log[r*s] + QPolyGamma[0, Log[-1/(E^r * r*s)]/Log[r^2*s^2], r^2*s^2]/ Log[r*s] + QPolyGamma[0, Log[-E^r / (r*s)] / Log[r^2*s^2], r^2*s^2]/Log[r*s] + (4*E^r / ((E^r + r*s)*(1 + E^r * r*s)))*(1 + r*s*Cosh[r] + r^2*s^2*(r^2*s*QPochhammer[-E^r / (r*s), r^2*s^2] * QPochhammer[r^2*s^2, r^2*s^2] * Derivative[0, 1][QPochhammer][-1/(E^r * r*s), r^2*s^2] + ((1 + r^2*s^2 + 2*r*s * Cosh[r]) * Derivative[0, 1][QPochhammer][-E^r / (r*s), r^2*s^2]) / QPochhammer[-E^r / (r*s), r^2*s^2] + ((1 + r^2*s^2 + 2*r*s*Cosh[r]) * Derivative[0, 1][QPochhammer][r^2*s^2, r^2*s^2]) / QPochhammer[r^2*s^2, r^2*s^2])) == 2}, {r, 1/4}, {s, 2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 19 2024 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), 2*cosh(m*x+x*O(x^n))*(x*A)^(m^2))); n!*polcoeff(A, n)}
(PARI) /* By Jacobi's Triple Product Identity: */
{a(n)=local(A=1+x); for(i=1, n, A=prod(m=1, n\2+1, (1-(x*A)^(2*m))*(1+exp(x+x*O(x^n))*(x*A)^(2*m-1))*(1+exp(-x+x*O(x^n))*(x*A)^(2*m-1)+x*O(x^n)))); n!*polcoeff(A, n)}
CROSSREFS
Cf. A196354.
Sequence in context: A052662 A375224 A365599 * A005155 A133316 A234301
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 09 2011
STATUS
approved