login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052662
E.g.f. (1-x^2)/(1-2x-x^2+x^3).
0
1, 2, 8, 54, 480, 5400, 72720, 1144080, 20563200, 415860480, 9344160000, 230958604800, 6227499801600, 181909958630400, 5722470212659200, 192874123233792000, 6934147333521408000, 264875092391669760000
OFFSET
0,2
FORMULA
E.g.f.: -(-1+x^2)/(x^3-x^2-2*x+1)
Recurrence: {a(0)=1, a(1)=2, a(2)=8, (n^3+6*n^2+11*n+6)*a(n)+(-n^2-5*n-6)*a(n+1)+(-2*n-6)*a(n+2)+a(n+3)=0}
Sum(1/7*(2+_alpha)*_alpha^(-1-n), _alpha=RootOf(_Z^3-_Z^2-2*_Z+1))*n!
a(n) = n!*A052534(n). - R. J. Mathar, Nov 27 2011
MAPLE
spec := [S, {S=Sequence(Union(Z, Prod(Z, Sequence(Prod(Z, Z)))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(1-x^2)/(1-2x-x^2+x^3), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Jan 29 2023 *)
CROSSREFS
Sequence in context: A354690 A052599 A352648 * A375224 A365599 A199576
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved