OFFSET
0,2
FORMULA
a(0) = 1; a(n) = 2 * Sum_{k=0..floor((n-1)/2)} (2*k+1) * binomial(n,2*k+1) * a(n-2*k-1).
a(n) ~ n! / ((1 + r * sqrt(1 - 4*r^2)) * r^n), where r = 0.452787214835453627588998503316635625709288535855800416726... is the root of the equation 2*r*cosh(r) = 1. - Vaclav Kotesovec, Mar 27 2022
MATHEMATICA
With[{m = 19}, Range[0, m]! * CoefficientList[Series[1/(1 - 2*x*Cosh[x]), {x, 0, m}], x]] (* Amiram Eldar, Mar 26 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-2*x*cosh(x))))
(PARI) a(n) = if(n==0, 1, 2*sum(k=0, (n-1)\2, (2*k+1)*binomial(n, 2*k+1)*a(n-2*k-1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 25 2022
STATUS
approved