login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234301
E.g.f.: 1 + Integral (1 + Integral (1 + Integral (1 + Integral (1 + ...)^5 dx)^4 dx)^3 dx)^2 dx.
3
1, 1, 2, 8, 54, 546, 7644, 140388, 3253608, 92429592, 3147053520, 126146938608, 5866848879168, 312780729436704, 18921429038592288, 1287533798347045536, 97808017722679006848, 8240098982756882179968, 765420628291191991328256, 77987441816127455405628672
OFFSET
0,3
LINKS
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2 + 8*x^3/3! + 54*x^4/4! + 546*x^5/5! + 7644*x^6/6! + 140388*x^7/7! + 3253608*x^8/8! + 92429592*x^9/9! + 3147053520*x^10/10! + 126146938608*x^11/11! + 5866848879168*x^12/12! + 312780729436704*x^13/13! + 18921429038592288*x^14/14! + 1287533798347045536*x^15/15! +...
such that
A(x) = 1 + Integral B(x)^2 dx,
B(x) = 1 + Integral C(x)^3 dx,
C(x) = 1 + Integral D(x)^4 dx,
D(x) = 1 + Integral E(x)^5 dx,
E(x) = 1 + Integral F(x)^6 dx,
F(x) = 1 + Integral G(x)^7 dx, ...
The coefficients in these series begin:
A: [1, 1, 2, 8, 54, 546, 7644, 140388, 3253608, 92429592, ...];
B: [1, 1, 3, 18, 174, 2412, 44652, 1052664, 30551760, 1064478696, ...];
C: [1, 1, 4, 32, 404, 7164, 166560, 4852440, 171572760, 7190293320, ...];
D: [1, 1, 5, 50, 780, 16890, 474390, 16535460, 693410580, 34189099680, ...];
E: [1, 1, 6, 72, 1338, 34254, 1129596, 45937884, 2234626128, 127127805168, ...];
F: [1, 1, 7, 98, 2114, 62496, 2368464, 110207328, 6109240368, 394581185712, ...];
G: [1, 1, 8, 128, 3144, 105432, 4516512, 236792304, 14746211280, 1067014500336, ...];
H: [1, 1, 9, 162, 4464, 167454, 8002890, 466950060, 32289796260, 2588975822520, ...];
I: [1, 1, 10, 200, 6110, 253530, 13374780, 859772820, 65386201560, 5756311080360, ...]; ...
DERIVATIVES.
To illustrate a(n) = d^n/dx^n A(x) at x=0, take successive derivatives of A=A(x):
A' = B^2;
A'' = 2*B*C^3;
A''' = 2*C^6 + 6*B*C^2*D^4;
A'''' = 18*C^5*D^4 + 12*B*C*D^8 + 24*B*C^2*D^3*E^5;
A''''' = 90*C^4*D^8 + 72*C^5*D^3*E^5 + 12*C^4*D^8 + 12*B*D^12 + 96*B*C*D^7*E^5 + 24*C^5*D^3*E^5 + 48*B*C*D^7*E^5 + 72*B*C^2*D^2*E^10 + 120*B*C^2*D^3*E^4*F^6;
A'''''' = 360*C^3*D^12 + 720*C^4*D^7*E^5 + 360*C^4*D^7*E^5 + 216*C^5*D^2*E^10 + 360*C^5*D^3*E^4*F^6 + 48*C^3*D^12 + 96*C^4*D^7*E^5 + 12*C^3*D^12 + 144*B*D^11*E^5 + 96*C^4*D^7*E^5 + 96*B*D^11*E^5 + 672*B*C*D^6*E^10 + 480*B*C*D^7*E^4*F^6 + 120*C^4*D^7*E^5 + 72*C^5*D^2*E^10 + 120*C^5*D^3*E^4*F^6 + 48*C^4*D^7*E^5 + 48*B*D^11*E^5 + 336*B*C*D^6*E^10 + 240*B*C*D^7*E^4*F^6 + 72*C^5*D^2*E^10 + 144*B*C*D^6*E^10 + 144*B*C^2*D*E^15 + 720*B*C^2*D^2*E^9*F^6 + 120*C^5*D^3*E^4*F^6 + 240*B*C*D^7*E^4*F^6 + 360*B*C^2*D^2*E^9*F^6 + 480*B*C^2*D^3*E^3*F^12 + 720*B*C^2*D^3*E^4*F^5*G^7; ...
and then evaluate at x=0, where 1=A(0)=B(0)=C(0)=D(0)=E(0)=...
PROG
(PARI) {a(n) = my(A=1); for(k=0, n-1, A = 1 + intformal((A+x*O(x^n))^(n+1-k))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* Print table of related series A, B, C, D, E, ... */
{a(n, r=1) = my(A=vector(3*n+2*r+2, i, 1+x));
for(m=1, 2*n+r, for(j=0, n+r+m, A[n+r+m-j+1] = 1 + intformal((A[n+r+m-j+2] + x^r*O(x^n))^(n+r+m-j+2)) ); ); polcoeff(A[r], n)}
for(r=1, 10, for(n=0, 10, print1(n!*a(n, r), ", ")); print(""))
/* Print this sequence (at row r=1): */
for(n=0, 25, print1(n!*a(n, 1), ", "))
CROSSREFS
Sequence in context: A199576 A005155 A133316 * A345249 A005440 A183282
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 22 2013
STATUS
approved