login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: 1 + Integral (1 + Integral (1 + Integral (1 + Integral (1 + ...)^5 dx)^4 dx)^3 dx)^2 dx.
3

%I #30 Sep 10 2017 11:20:07

%S 1,1,2,8,54,546,7644,140388,3253608,92429592,3147053520,126146938608,

%T 5866848879168,312780729436704,18921429038592288,1287533798347045536,

%U 97808017722679006848,8240098982756882179968,765420628291191991328256,77987441816127455405628672

%N E.g.f.: 1 + Integral (1 + Integral (1 + Integral (1 + Integral (1 + ...)^5 dx)^4 dx)^3 dx)^2 dx.

%H Paul D. Hanna, <a href="/A234301/b234301.txt">Table of n, a(n) for n = 0..100</a>

%e E.g.f.: A(x) = 1 + x + 2*x^2 + 8*x^3/3! + 54*x^4/4! + 546*x^5/5! + 7644*x^6/6! + 140388*x^7/7! + 3253608*x^8/8! + 92429592*x^9/9! + 3147053520*x^10/10! + 126146938608*x^11/11! + 5866848879168*x^12/12! + 312780729436704*x^13/13! + 18921429038592288*x^14/14! + 1287533798347045536*x^15/15! +...

%e such that

%e A(x) = 1 + Integral B(x)^2 dx,

%e B(x) = 1 + Integral C(x)^3 dx,

%e C(x) = 1 + Integral D(x)^4 dx,

%e D(x) = 1 + Integral E(x)^5 dx,

%e E(x) = 1 + Integral F(x)^6 dx,

%e F(x) = 1 + Integral G(x)^7 dx, ...

%e The coefficients in these series begin:

%e A: [1, 1, 2, 8, 54, 546, 7644, 140388, 3253608, 92429592, ...];

%e B: [1, 1, 3, 18, 174, 2412, 44652, 1052664, 30551760, 1064478696, ...];

%e C: [1, 1, 4, 32, 404, 7164, 166560, 4852440, 171572760, 7190293320, ...];

%e D: [1, 1, 5, 50, 780, 16890, 474390, 16535460, 693410580, 34189099680, ...];

%e E: [1, 1, 6, 72, 1338, 34254, 1129596, 45937884, 2234626128, 127127805168, ...];

%e F: [1, 1, 7, 98, 2114, 62496, 2368464, 110207328, 6109240368, 394581185712, ...];

%e G: [1, 1, 8, 128, 3144, 105432, 4516512, 236792304, 14746211280, 1067014500336, ...];

%e H: [1, 1, 9, 162, 4464, 167454, 8002890, 466950060, 32289796260, 2588975822520, ...];

%e I: [1, 1, 10, 200, 6110, 253530, 13374780, 859772820, 65386201560, 5756311080360, ...]; ...

%e DERIVATIVES.

%e To illustrate a(n) = d^n/dx^n A(x) at x=0, take successive derivatives of A=A(x):

%e A' = B^2;

%e A'' = 2*B*C^3;

%e A''' = 2*C^6 + 6*B*C^2*D^4;

%e A'''' = 18*C^5*D^4 + 12*B*C*D^8 + 24*B*C^2*D^3*E^5;

%e A''''' = 90*C^4*D^8 + 72*C^5*D^3*E^5 + 12*C^4*D^8 + 12*B*D^12 + 96*B*C*D^7*E^5 + 24*C^5*D^3*E^5 + 48*B*C*D^7*E^5 + 72*B*C^2*D^2*E^10 + 120*B*C^2*D^3*E^4*F^6;

%e A'''''' = 360*C^3*D^12 + 720*C^4*D^7*E^5 + 360*C^4*D^7*E^5 + 216*C^5*D^2*E^10 + 360*C^5*D^3*E^4*F^6 + 48*C^3*D^12 + 96*C^4*D^7*E^5 + 12*C^3*D^12 + 144*B*D^11*E^5 + 96*C^4*D^7*E^5 + 96*B*D^11*E^5 + 672*B*C*D^6*E^10 + 480*B*C*D^7*E^4*F^6 + 120*C^4*D^7*E^5 + 72*C^5*D^2*E^10 + 120*C^5*D^3*E^4*F^6 + 48*C^4*D^7*E^5 + 48*B*D^11*E^5 + 336*B*C*D^6*E^10 + 240*B*C*D^7*E^4*F^6 + 72*C^5*D^2*E^10 + 144*B*C*D^6*E^10 + 144*B*C^2*D*E^15 + 720*B*C^2*D^2*E^9*F^6 + 120*C^5*D^3*E^4*F^6 + 240*B*C*D^7*E^4*F^6 + 360*B*C^2*D^2*E^9*F^6 + 480*B*C^2*D^3*E^3*F^12 + 720*B*C^2*D^3*E^4*F^5*G^7; ...

%e and then evaluate at x=0, where 1=A(0)=B(0)=C(0)=D(0)=E(0)=...

%o (PARI) {a(n) = my(A=1); for(k=0,n-1, A = 1 + intformal((A+x*O(x^n))^(n+1-k))); n!*polcoeff(A,n)}

%o for(n=0,25,print1(a(n),", "))

%o (PARI) /* Print table of related series A,B,C,D,E,... */

%o {a(n, r=1) = my(A=vector(3*n+2*r+2, i, 1+x));

%o for(m=1, 2*n+r, for(j=0, n+r+m, A[n+r+m-j+1] = 1 + intformal((A[n+r+m-j+2] + x^r*O(x^n))^(n+r+m-j+2)) ); ); polcoeff(A[r], n)}

%o for(r=1,10, for(n=0, 10, print1(n!*a(n, r), ", "));print(""))

%o /* Print this sequence (at row r=1): */

%o for(n=0, 25, print1(n!*a(n, 1), ", "))

%Y Cf. A095793, A234296.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Dec 22 2013