Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Aug 28 2024 05:00:50
%S 1,0,2,0,6,0,20,2,70,18,252,110,924,572,3434,2730,12902,12376,48926,
%T 54264,187036,232562,720062,980674,2789164,4086550,10861060,16878420,
%U 42484682,69242082,166823430,282580872,657178982,1148548016,2595874468
%N Number of closed walks of length n at a vertex of the cyclic graph on 7 nodes C_7.
%C In general, a(n,m) = (2^n/m)*Sum_{k=0..m-1} cos(2*Pi*k/m)^n gives the number of closed walks of length n at a vertex of the cyclic graph on m nodes C_m.
%H Harvey P. Dale, <a href="/A094659/b094659.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,4,-3,-2).
%F a(n) = (2^n/7)*Sum_{k=0..6} cos(2*Pi*k/7)^n.
%F a(n) = 7(a(n-2) - 2a(n-4) + a(n-6)) + 2a(n-7).
%F G.f.: (1-x-2x^2+x^3)/((2x-1)(-1-x+2x^2+x^3)).
%F a(0)=1, a(1)=0, a(2)=2, a(3)=0, a(n)=a(n-1)+4*a(n-2)-3*a(n-3)-2*a(n-4). - _Harvey P. Dale_, Jun 12 2014
%F 7*a(n) = 2^n + 2*A094648(n). - _R. J. Mathar_, Nov 03 2020
%t f[n_] := FullSimplify[ TrigToExp[ 2^n/7 Sum[Cos[2Pi*k/7]^n, {k, 0, 6}]]]; Table[ f[n], {n, 0, 36}] (* _Robert G. Wilson v_, Jun 09 2004 *)
%t LinearRecurrence[{1,4,-3,-2},{1,0,2,0},40] (* _Harvey P. Dale_, Jun 12 2014 *)
%Y Cf. A199572 (m=2), A078008 (m=3), A199573 (m=4), A054877 (m=5), A047849 (bisection of m=6), A063376 (bisection of m=8), A094233 (m=9), A095929 (bisection of m=10), A087433 (bisection of m=12).
%K nonn,easy
%O 0,3
%A _Herbert Kociemba_, Jun 06 2004
%E More terms from _Robert G. Wilson v_, Jun 09 2004