login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263789
Triangle read by rows: T(n,k) (n>=0, 0<=k<=floor(n/2)) is the number of permutations of n and k valleys (considered cyclically).
7
1, 1, 0, 2, 0, 6, 0, 16, 8, 0, 40, 80, 0, 96, 528, 96, 0, 224, 2912, 1904, 0, 512, 14592, 23040, 2176, 0, 1152, 69120, 221184, 71424, 0, 2560, 316160, 1858560, 1372160, 79360, 0, 5632, 1413632, 14353152, 20252672, 3891712, 0, 12288, 6223872, 104742912
OFFSET
0,4
COMMENTS
Conjecture: column k > 0 is asymptotic to n * 2^(n-2*k) * k^(n-1). - Vaclav Kotesovec, Oct 26 2015
LINKS
FindStat - Combinatorial Statistic Finder, The number of cyclic valleys and cyclic peaks of a permutation.
FORMULA
T(n,k) = n*A008303(n-1, k-1) for n > 1. - Andrew Howroyd, May 13 2020
EXAMPLE
Triangle begins:
1;
1;
0, 2;
0, 6;
0, 16, 8;
0, 40, 80;
0, 96, 528, 96;
...
MAPLE
b:= proc(u, o, t) option remember; expand(`if`(u+o=0, x,
add(b(u-j, o+j-1, 0), j=1..u)*`if`(min(t, n)>0, x, 1)+
add(b(u+j-1, o-j, 1), j=1..o)))
end:
T:= n-> `if`(n<2, 1, (p-> seq(n*coeff(p, x, i)
, i=0..degree(p)))(b(n-1, 0$2))):
seq(T(n), n=0..14); # Alois P. Heinz, Oct 28 2015
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = Expand[If[u+o == 0, x, Sum[b[u-j, o+j-1, 0], {j, 1, u}]*If[Min[t, n] > 0, x, 1] + Sum[b[u+j-1, o-j, 1], {j, 1, o}]]]; T[n_] := If[n<2, 1, Function[p, Table[n*Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n-1, 0, 0]]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 24 2017, after Alois P. Heinz *)
CROSSREFS
Columns k=1-6 give: A057711 (for n>1), A159710, A159711, A159712, A159713, A159714.
Row sums give A000142.
Sequence in context: A285479 A327369 A296620 * A081153 A369278 A126869
KEYWORD
nonn,tabf
AUTHOR
Christian Stump, Oct 26 2015
EXTENSIONS
More terms from Alois P. Heinz, Oct 26 2015
STATUS
approved