login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159711
Number of permutations of 1..n arranged in a circle with exactly 3 local maxima.
2
0, 0, 0, 0, 0, 0, 96, 1904, 23040, 221184, 1858560, 14353152, 104742912, 734769152, 5010432000, 33464217600, 220066480128, 1430279159808, 9212045819904, 58914039332864, 374665295953920, 2371935399837696, 14960708435312640, 94072038170296320, 589975504803594240
OFFSET
0,7
LINKS
Index entries for linear recurrences with constant coefficients, signature (32,-444,3504,-17328,55680,-116288,152320,-113664,36864).
FORMULA
G.f.: -16*(144*x^4-444*x^3+296*x^2-73*x+6)*x^6 / ((6*x-1)^2 *(4*x-1)^3 *(2*x-1)^4). - Alois P. Heinz, Oct 26 2015
a(n) = 1/3*2^(-6+n)*n*(15+3*2^(1+n)+3^n-3*(8+2^n)*n+6*n^2) for n>1. - Colin Barker, Oct 26 2015
MATHEMATICA
Table[(1/3)*2^(-6+n)*n*(15+3*2^(1+n)+3^n-3*(8+2^n)*n+6*n^2), {n, 0, 30}] (* G. C. Greubel, Jun 01 2018 *)
PROG
(PARI) a(n) = if(n==1, 0, 1/3*2^(-6+n)*n*(15+3*2^(1+n)+3^n-3*(8+2^n)*n +6*n^2)) \\ Colin Barker, Oct 26 2015
(PARI) concat(vector(6), Vec(-16*x^6*(144*x^4-444*x^3+296*x^2-73*x+6)/(
(2*x-1)^4*(4*x-1)^3*(6*x-1)^2) + O(x^30))) \\ Colin Barker, Oct 26 2015
(Magma) [(1/3)*2^(-6+n)*n*(15+3*2^(1+n)+3^n-3*(8+2^n)*n+6*n^2): n in [0..30]]; // G. C. Greubel, Jun 01 2018
CROSSREFS
Column k=3 of A263789.
Sequence in context: A064243 A001667 A093984 * A268636 A233153 A204624
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Apr 20 2009
EXTENSIONS
a(17)-a(24) from Alois P. Heinz, Oct 26 2015
STATUS
approved