OFFSET
0,7
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (32,-444,3504,-17328,55680,-116288,152320,-113664,36864).
FORMULA
G.f.: -16*(144*x^4-444*x^3+296*x^2-73*x+6)*x^6 / ((6*x-1)^2 *(4*x-1)^3 *(2*x-1)^4). - Alois P. Heinz, Oct 26 2015
a(n) = 1/3*2^(-6+n)*n*(15+3*2^(1+n)+3^n-3*(8+2^n)*n+6*n^2) for n>1. - Colin Barker, Oct 26 2015
MATHEMATICA
Table[(1/3)*2^(-6+n)*n*(15+3*2^(1+n)+3^n-3*(8+2^n)*n+6*n^2), {n, 0, 30}] (* G. C. Greubel, Jun 01 2018 *)
PROG
(PARI) a(n) = if(n==1, 0, 1/3*2^(-6+n)*n*(15+3*2^(1+n)+3^n-3*(8+2^n)*n +6*n^2)) \\ Colin Barker, Oct 26 2015
(PARI) concat(vector(6), Vec(-16*x^6*(144*x^4-444*x^3+296*x^2-73*x+6)/(
(2*x-1)^4*(4*x-1)^3*(6*x-1)^2) + O(x^30))) \\ Colin Barker, Oct 26 2015
(Magma) [(1/3)*2^(-6+n)*n*(15+3*2^(1+n)+3^n-3*(8+2^n)*n+6*n^2): n in [0..30]]; // G. C. Greubel, Jun 01 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Apr 20 2009
EXTENSIONS
a(17)-a(24) from Alois P. Heinz, Oct 26 2015
STATUS
approved