login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) (n>=0, 0<=k<=floor(n/2)) is the number of permutations of n and k valleys (considered cyclically).
7

%I #39 May 13 2020 19:21:11

%S 1,1,0,2,0,6,0,16,8,0,40,80,0,96,528,96,0,224,2912,1904,0,512,14592,

%T 23040,2176,0,1152,69120,221184,71424,0,2560,316160,1858560,1372160,

%U 79360,0,5632,1413632,14353152,20252672,3891712,0,12288,6223872,104742912

%N Triangle read by rows: T(n,k) (n>=0, 0<=k<=floor(n/2)) is the number of permutations of n and k valleys (considered cyclically).

%C Conjecture: column k > 0 is asymptotic to n * 2^(n-2*k) * k^(n-1). - _Vaclav Kotesovec_, Oct 26 2015

%H Alois P. Heinz, <a href="/A263789/b263789.txt">Rows n = 0..200, flattened</a>

%H FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/StatisticsDatabase/St000243">The number of cyclic valleys and cyclic peaks of a permutation</a>.

%F T(n,k) = n*A008303(n-1, k-1) for n > 1. - _Andrew Howroyd_, May 13 2020

%e Triangle begins:

%e 1;

%e 1;

%e 0, 2;

%e 0, 6;

%e 0, 16, 8;

%e 0, 40, 80;

%e 0, 96, 528, 96;

%e ...

%p b:= proc(u, o, t) option remember; expand(`if`(u+o=0, x,

%p add(b(u-j, o+j-1, 0), j=1..u)*`if`(min(t, n)>0, x, 1)+

%p add(b(u+j-1, o-j, 1), j=1..o)))

%p end:

%p T:= n-> `if`(n<2, 1, (p-> seq(n*coeff(p, x, i)

%p , i=0..degree(p)))(b(n-1, 0$2))):

%p seq(T(n), n=0..14); # _Alois P. Heinz_, Oct 28 2015

%t b[u_, o_, t_] := b[u, o, t] = Expand[If[u+o == 0, x, Sum[b[u-j, o+j-1, 0], {j, 1, u}]*If[Min[t, n] > 0, x, 1] + Sum[b[u+j-1, o-j, 1], {j, 1, o}]]]; T[n_] := If[n<2, 1, Function[p, Table[n*Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n-1, 0, 0]]]; Table[T[n], {n, 0, 14}] // Flatten (* _Jean-François Alcover_, Jan 24 2017, after _Alois P. Heinz_ *)

%Y Columns k=1-6 give: A057711 (for n>1), A159710, A159711, A159712, A159713, A159714.

%Y Row sums give A000142.

%Y Cf. A000142, A008303.

%K nonn,tabf

%O 0,4

%A _Christian Stump_, Oct 26 2015

%E More terms from _Alois P. Heinz_, Oct 26 2015