login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338748
G.f. A(x) satisfies: 1 = A(x) - x*A(x)/(A(x) - x*A(x)^2/(A(x) - x*A(x)^3/(A(x) - x*A(x)^4/(A(x) - x*A(x)^5/(A(x) - ...))))), a continued fraction relation.
3
1, 1, 1, 2, 6, 22, 92, 423, 2093, 10994, 60744, 350743, 2106422, 13110304, 84330164, 559367278, 3819233961, 26802388190, 193080823079, 1426252354150, 10792528835886, 83587157097544, 662060553448763, 5358900630188358, 44296806348364981
OFFSET
0,4
COMMENTS
Note that the continued fraction relation: 1 = F(x) - x*F(x)^k/(F(x) - x*F(x)^k/(F(x) - x*F(x)^k/(F(x) - ...))) holds when F(x) = 1 + x*F(x)^k for a fixed parameter k; this sequence explores the case where the parameter k varies over the positive integers in the continued fraction expression.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = P(x)/Q(x), where
P(x) = Sum_{n>=0} A(x)^(n*(n-1)) * x^n / Product_{k=1..n} (A(x)^k - 1),
Q(x) = Sum_{n>=0} A(x)^(n*(n-2)) * x^n / Product_{k=1..n} (A(x)^k - 1),
due to Ramanujan's continued fraction identity.
(2) A(x) = 1 + x*N(x)/P(x), where
N(x) = Sum_{n>=0} A(x)^(n^2) * x^n / Product_{k=1..n} (A(x)^k - 1),
P(x) = Sum_{n>=0} A(x)^(n*(n-1)) * x^n / Product_{k=1..n} (A(x)^k - 1).
(3) A(x) = x/(1 - R(x)/Q(x)), where
Q(x) = Sum_{n>=0} A(x)^(n*(n-2)) * x^n / Product_{k=1..n} (A(x)^k - 1),
R(x) = Sum_{n>=0} A(x)^(n*(n-3)) * x^n / Product_{k=1..n} (A(x)^k - 1).
(4) A(x) = 1 + x/(1 - x*M(x)/N(x)), where
M(x) = Sum_{n>=0} A(x)^(n*(n+1)) * x^n / Product_{k=1..n} (A(x)^k - 1),
N(x) = Sum_{n>=0} A(x)^(n^2) * x^n / Product_{k=1..n} (A(x)^k - 1).
(5) A(x) = B(x*A(x)) where B(x) = A(x/B(x)) is the g.f. of A338747.
(6) A(x) = (1/x)*Series_Reversion( x/B(x) ) where B(x) is the g.f. of A338747.
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 6*x^4 + 22*x^5 + 92*x^6 + 423*x^7 + 2093*x^8 + 10994*x^9 + 60744*x^10 + 350743*x^11 + 2106422*x^12 + ...
where
1 = A(x) - x*A(x)/(A(x) - x*A(x)^2/(A(x) - x*A(x)^3/(A(x) - x*A(x)^4/(A(x) - x*A(x)^5/(A(x) - x*A(x)^6/(A(x) - ...)))))).
RELATED SERIES.
Given B(x) is the g.f. of A338747:
B(x) = 1 + x + x^3 + x^4 + 6*x^5 + 17*x^6 + 79*x^7 + 330*x^8 + 1594*x^9 + 7876*x^10 + 41433*x^11 + 226617*x^12 + ...
then B(x) = A(x/B(x)) and A(x) = B(x*A(x))
where
1 = B(x) - x/(B(x) - x*B(x)/(B(x) - x*B(x)^2/(B(x) - x*B(x)^3/(B(x) - x*B(x)^4/(B(x) - x*B(x)^5/(B(x) - ...)))))).
PROG
(PARI) {a(n) = my(A=[1], CF=1); for(i=1, n, A=concat(A, 0); for(i=1, #A, CF = Ser(A) - (Ser(A)^(#A-i+1)*x)/CF ); A[#A] = -polcoeff(CF, #A-1) ); H=Ser(A); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A001181 A130579 A279570 * A107945 A279571 A014330
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 06 2020
STATUS
approved