login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130579
Convolution of A000108 (Catalan numbers) and A001764 (ternary trees): a(n) = Sum_{k=0..n} C(2k,k) * C(3(n-k),n-k) / [(k+1)(2(n-k)+1)].
1
1, 2, 6, 22, 92, 423, 2087, 10856, 58765, 327877, 1872490, 10890483, 64267612, 383773529, 2314271146, 14071475748, 86165249745, 530862665988, 3288219482754, 20464419717069, 127901478759153, 802421158028657
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x) = C(x)*T(x) where C(x) = 1 + x*C(x)^2 is the g.f. of A000108 and T(x) = 1 + x*T(x)^3 is the g.f. of A001764.
a(n) ~ 3^(3*n+2) / ((3^(3/2) + sqrt(11)) * sqrt(Pi) * n^(3/2) * 2^(2*n+1)). - Vaclav Kotesovec, Nov 12 2024
MAPLE
f:= proc(n) local k; add(binomial(2*k, k)/(k+1)*binomial(3*(n-k), n-k)/(2*(n-k)+1), k=0..n) end proc:
map(f, [$0..25]); # Robert Israel, Nov 12 2024
PROG
(PARI) a(n)=sum(k=0, n, binomial(2*k, k)/(k+1)*binomial(3*(n-k), n-k)/(2*(n-k)+1))
CROSSREFS
Sequence in context: A342293 A342291 A001181 * A279570 A338748 A107945
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 07 2007
STATUS
approved