login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243022
Expansion of -(2*x)/(1-sqrt(1-(2*(1-sqrt(1-4*x^2)))/x)).
0
-1, 1, 2, 2, 7, 18, 61, 198, 694, 2446, 8873, 32556, 121243, 455986, 1731459, 6625258, 25527571, 98947914, 385587017, 1509702496, 5936181673, 23430706276, 92805006308, 368747893980, 1469408091637, 5870927247410
OFFSET
0,3
FORMULA
a(n) = sum(i=0..n/2, binomial(n-1,i)*binomial(2*n-4*i-2,n-2*i))/(n-1), n>1, a(0)=-1, a(1)=1.
G.f.: A(x) =-1/(C(x^2)*C(x*C(x^2))), where C(x) is g.f. of A000108.
a(n) ~ 4*(17/4)^n / (sqrt(255*Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 15 2014
Conjecture D-finite with recurrence: +2*n*(n-1)*(2*n-3)*(5*n-12)*a(n) -(n-1)*(85*n^3-459*n^2+776*n-400)*a(n-1) +4*(-40*n^4+396*n^3-1455*n^2+2324*n-1360)*a(n-2) +4*(n-4)*(170*n^3-1258*n^2+3003*n-2185)*a(n-3) +16*(n-4)*(n-5)*(20*n^2-118*n+143)*a(n-4) -272*(n-4)*(n-5)*(n-6)*(5*n-7)*a(n-5)=0. - R. J. Mathar, Jul 15 2017
MATHEMATICA
CoefficientList[Series[2*x/(-1 + Sqrt[(-2 + x + 2*Sqrt[1-4*x^2])/x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 15 2014 *)
PROG
(Maxima)
a(n):=if n=0 then -1 else if n=1 then 1 else sum(binomial(n-1, i)*binomial(2*n-4*i-2, n-2*i), i, 0, n/2)/(n-1);
(PARI) a(n) = if (n==0, -1, if (n==1, 1, sum(k=0, n\2, binomial(n-1, k)*binomial(2*n-4*k-2, n-2*k))/(n-1))); \\ Michel Marcus, Jun 10 2014
CROSSREFS
Cf. A000108.
Sequence in context: A203176 A203579 A338415 * A049955 A184714 A156464
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 09 2014
STATUS
approved