login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243025
Fixed points of the transform n = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + ... + d_(2)*10 + d_(1) -> Sum_{i=1..k-1}{d_(i)^d(i+1)}+d(k)^d(1) (A243023).
2
1, 4155, 4355, 1953504, 1954329, 522169982
OFFSET
1,2
COMMENTS
Subset of A243023.
This sequence is finite by using the same argument that Armstrong numbers (A005188) are finite. - Robert G. Wilson v, Jun 01 2014
EXAMPLE
1^1 = 1.
5^5 + 5^1 + 1^4 + 4^5 = 4155.
5^5 + 5^3 + 3^4 + 4^5 = 4355.
4^0 + 0^5 + 5^3 + 3^5 + 5^9 + 9^1 + 1^4 = 1953504.
9^2 + 2^3 + 3^4 + 4^5 + 5^9 + 9^1 + 1^9 = 1954329.
MAPLE
with(numtheory): P:=proc(q) local a, b, k, ok, n; for n from 10 to q do a:=[]; b:=n;
while b>0 do a:=[op(a), b mod 10]; b:=trunc(b/10); od; b:=0; ok:=1; for k from 2 to nops(a)
do if a[k-1]=0 and a[k]=0 then ok:=0; break; else b:=b+a[k-1]^a[k]; fi; od;
if ok=1 then if n=(b+a[nops(a)]^a[nops(1)]) then print(n);
fi; fi; od; end: P(10^10);
MATHEMATICA
fQ[n_] := Block[{r = Reverse@ IntegerDigits@ n}, n == Plus @@ (r^RotateLeft@ r)]; k = 1; lst = {}; While[k < 1000000001, If[ fQ@ k, AppendTo[ lst, k]; Print@ k]; k++] (* Robert G. Wilson v, Jun 01 2014 *)
CROSSREFS
KEYWORD
nonn,base,fini,full
AUTHOR
Paolo P. Lava, May 29 2014
EXTENSIONS
Added a(1) as 1 and a(6) by Robert G. Wilson v, Jun 01 2014
STATUS
approved