login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168663
a(n) = n^7*(n^6 + 1)/2.
2
0, 1, 4160, 798255, 33562624, 610390625, 6530486976, 48444916975, 274878955520, 1270935305649, 5000005000000, 17261365815551, 53496620605440, 151437584670385, 396857439333824, 973097619609375, 2251799947902976
OFFSET
0,3
COMMENTS
Number of unoriented rows of length 13 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=4160, there are 2^13=8192 oriented arrangements of two colors. Of these, 2^7=128 are achiral. That leaves (8192-128)/2=4032 chiral pairs. Adding achiral and chiral, we get 4160. - Robert A. Russell, Nov 13 2018
LINKS
Index entries for linear recurrences with constant coefficients, signature (14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1).
FORMULA
From G. C. Greubel, Jul 28 2016: (Start)
G.f.: x*(1 + 4146*x + 740106*x^2 + 22765250*x^3 + 211641855*x^4 + 752814348*x^5 + 1137578988*x^6 + 752814348*x^7 + 211641855*x^8 + 22765250*x^9 + 740106*x^10 + 4146*x^11 + x^12)/(1 - x)^14.
E.g.f.: (1/2)*x*(2 + 4158*x + 261926*x^2 + 2532880*x^3 + 7508641*x^4 + 9321333*x^5 + 5715425*x^6 + 1899612*x^7 + 359502*x^8 + 39325*x^9 + 2431*x^10 + 78*x^11 + x^12)*exp(x). (End)
From Robert A. Russell, Nov 13 2018: (Start)
a(n) = (A010801(n) + A001015(n)) / 2 = (n^13 + n^7) / 2.
G.f.: (Sum_{j=1..13} S2(13,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..7} S2(7,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..12} A145882(13,k) * x^k / (1-x)^14.
E.g.f.: (Sum_{k=1..13} S2(13,k)*x^k + Sum_{k=1..7} S2(7,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>13, a(n) = Sum_{j=1..14} -binomial(j-15,j) * a(n-j). (End)
MATHEMATICA
Table[n^7(n^6+1)/2, {n, 0, 20}] (* Harvey P. Dale, Jan 20 2013 *)
PROG
(Magma) [n^7*(n^6+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 28 2011
(PARI) a(n)=n^7*(n^6+1)/2 \\ Charles R Greathouse IV, Jul 28 2016
CROSSREFS
Row 13 of A277504.
Cf. A010801 (oriented), A001015 (achiral).
Sequence in context: A243025 A196494 A104824 * A043627 A250161 A256836
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 2009
STATUS
approved