login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243024
Consider a k-digit number m = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + ... + d_(2)*10 + d_(1). Sequence lists the numbers m that divide Sum_{i=1..k-1}{d_(i)^d_(i+1)}+d_(k)^d_(1).
2
1, 2, 3, 4, 5, 6, 7, 8, 9, 63, 448, 1899, 1942, 4155, 4355, 8503, 28375, 44569, 73687, 1953504, 1954329, 70860598, 522169982
OFFSET
1,2
COMMENTS
Numbers with two consecutive zeros are not considered, to avoid the case 0^0. Nevertheless, even if we consider 0^0=1 the results do not change (at least up to m=10^8).
EXAMPLE
For 1899 we have: 9^9 + 9^8 + 8^1 + 1^9 = 430467219.
Finally 430467219/1899 = 226681.
For 1954329 we have: 9^2 + 2^3 +3^4 + 4^5 + 5^9 + 9^1 + 1^9 = 1954329.
MAPLE
with(numtheory): P:=proc(q) local a, b, k, ok, n; for n from 10 to q do a:=[]; b:=n;
while b>0 do a:=[op(a), b mod 10]; b:=trunc(b/10); od; b:=0; ok:=1; for k from 2 to nops(a)
do if a[k-1]=0 and a[k]=0 then ok:=0; break; else b:=b+a[k-1]^a[k]; fi; od;
if ok=1 then if type((b+a[nops(a)]^a[nops(1)])/n, integer) then print(n);
fi; fi; od; end: P(10^10);
PROG
(PARI) isok(n) = d = digits(n); k = #d; (sum(i=1, k-1, j=k-i+1; d[j]^d[(j-1)])+ d[1]^d[k]) % n == 0; \\ Michel Marcus, Sep 29 2014
CROSSREFS
Sequence in context: A320081 A243507 A243023 * A004860 A302499 A024662
KEYWORD
nonn,base,fini,full
AUTHOR
Paolo P. Lava, May 29 2014
EXTENSIONS
a(1)-a(9) prepended and a(23) from Hiroaki Yamanouchi, Sep 29 2014
STATUS
approved