login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Consider a k-digit number m = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + ... + d_(2)*10 + d_(1). Sequence lists the numbers m that divide Sum_{i=1..k-1}{d_(i)^d_(i+1)}+d_(k)^d_(1).
2

%I #22 Feb 18 2021 00:46:36

%S 1,2,3,4,5,6,7,8,9,63,448,1899,1942,4155,4355,8503,28375,44569,73687,

%T 1953504,1954329,70860598,522169982

%N Consider a k-digit number m = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + ... + d_(2)*10 + d_(1). Sequence lists the numbers m that divide Sum_{i=1..k-1}{d_(i)^d_(i+1)}+d_(k)^d_(1).

%C Numbers with two consecutive zeros are not considered, to avoid the case 0^0. Nevertheless, even if we consider 0^0=1 the results do not change (at least up to m=10^8).

%e For 1899 we have: 9^9 + 9^8 + 8^1 + 1^9 = 430467219.

%e Finally 430467219/1899 = 226681.

%e For 1954329 we have: 9^2 + 2^3 +3^4 + 4^5 + 5^9 + 9^1 + 1^9 = 1954329.

%p with(numtheory): P:=proc(q) local a,b,k,ok,n; for n from 10 to q do a:=[]; b:=n;

%p while b>0 do a:=[op(a),b mod 10]; b:=trunc(b/10); od; b:=0; ok:=1; for k from 2 to nops(a)

%p do if a[k-1]=0 and a[k]=0 then ok:=0; break; else b:=b+a[k-1]^a[k]; fi; od;

%p if ok=1 then if type((b+a[nops(a)]^a[nops(1)])/n,integer) then print(n);

%p fi; fi; od; end: P(10^10);

%o (PARI) isok(n) = d = digits(n); k = #d; (sum(i=1, k-1, j=k-i+1; d[j]^d[(j-1)])+ d[1]^d[k]) % n == 0; \\ _Michel Marcus_, Sep 29 2014

%Y Cf. A243023, A243025.

%K nonn,base,fini,full

%O 1,2

%A _Paolo P. Lava_, May 29 2014

%E a(1)-a(9) prepended and a(23) from _Hiroaki Yamanouchi_, Sep 29 2014