login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184714
Number of words of numbers x(1), ..., x(n), in 0..3 such that Sum_{i=1..n} i*x(i)^3 = 27*n.
1
1, 1, 2, 2, 7, 19, 39, 120, 411, 1310, 3862, 11059, 31849, 89615, 247305, 674579, 1812940, 4806211, 12576930, 32509641, 83052304, 209808493, 524424707, 1297623584, 3179903180, 7721053410, 18582920108, 44349211490, 104989527861, 246624184465, 575024282279
OFFSET
1,3
COMMENTS
Coefficient of x^(27*n) in Product_{i=1..n} (1 + x^i + x^(8*i) + x^(27*i)). - Robert Israel, Jul 03 2018
LINKS
EXAMPLE
All solutions for n=5:
0 0 3 2 1 1 2
0 3 0 2 1 2 1
0 3 0 1 2 3 3
0 0 3 3 3 2 1
3 0 0 0 0 1 2
MAPLE
F:= proc(n, s) option remember; if n = 1 or s < 0 then 0 else add(procname(n-1, s-n*j^3), j=0..3) fi end proc:
F(1, 0):= 1: F(1, 1):= 1: F(1, 8):= 1: F(1, 27):= 1:
seq(F(n, n*27), n=1..50); # Robert Israel, Jul 03 2018
MATHEMATICA
F[n_, s_] := F[n, s] = If[n == 1 || s < 0, 0, Sum[F[n-1, s-n*j^3], {j, 0, 3}]]; F[1, 0] = 1; F[1, 1] = 1; F[1, 8] = 1; F[1, 27] = 1;
Table[F[n, 27 n], {n, 1, 50}] (* Jean-François Alcover, May 23 2023, after Robert Israel *)
CROSSREFS
Column 3 of A184720.
Sequence in context: A338415 A243022 A049955 * A156464 A156520 A307426
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 20 2011
STATUS
approved