login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of -(2*x)/(1-sqrt(1-(2*(1-sqrt(1-4*x^2)))/x)).
0

%I #29 Jan 30 2020 21:29:17

%S -1,1,2,2,7,18,61,198,694,2446,8873,32556,121243,455986,1731459,

%T 6625258,25527571,98947914,385587017,1509702496,5936181673,

%U 23430706276,92805006308,368747893980,1469408091637,5870927247410

%N Expansion of -(2*x)/(1-sqrt(1-(2*(1-sqrt(1-4*x^2)))/x)).

%F a(n) = sum(i=0..n/2, binomial(n-1,i)*binomial(2*n-4*i-2,n-2*i))/(n-1), n>1, a(0)=-1, a(1)=1.

%F G.f.: A(x) =-1/(C(x^2)*C(x*C(x^2))), where C(x) is g.f. of A000108.

%F a(n) ~ 4*(17/4)^n / (sqrt(255*Pi) * n^(3/2)). - _Vaclav Kotesovec_, Jun 15 2014

%F Conjecture D-finite with recurrence: +2*n*(n-1)*(2*n-3)*(5*n-12)*a(n) -(n-1)*(85*n^3-459*n^2+776*n-400)*a(n-1) +4*(-40*n^4+396*n^3-1455*n^2+2324*n-1360)*a(n-2) +4*(n-4)*(170*n^3-1258*n^2+3003*n-2185)*a(n-3) +16*(n-4)*(n-5)*(20*n^2-118*n+143)*a(n-4) -272*(n-4)*(n-5)*(n-6)*(5*n-7)*a(n-5)=0. - _R. J. Mathar_, Jul 15 2017

%t CoefficientList[Series[2*x/(-1 + Sqrt[(-2 + x + 2*Sqrt[1-4*x^2])/x]), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Jun 15 2014 *)

%o (Maxima)

%o a(n):=if n=0 then -1 else if n=1 then 1 else sum(binomial(n-1,i)*binomial(2*n-4*i-2,n-2*i),i,0,n/2)/(n-1);

%o (PARI) a(n) = if (n==0, -1, if (n==1, 1, sum(k=0, n\2, binomial(n-1, k)*binomial(2*n-4*k-2, n-2*k))/(n-1))); \\ _Michel Marcus_, Jun 10 2014

%Y Cf. A000108.

%K sign

%O 0,3

%A _Vladimir Kruchinin_, Jun 09 2014