login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320085
Triangle read by rows, 0 <= k <= n: T(n,k) is the numerator of the derivative of the k-th Bernstein basis polynomial of degree n evaluated at the interval midpoint t = 1/2; denominator is A320086.
2
0, -1, 1, -1, 0, 1, -3, -3, 3, 3, -1, -1, 0, 1, 1, -5, -15, -5, 5, 15, 5, -3, -3, -15, 0, 15, 3, 3, -7, -35, -63, -35, 35, 63, 35, 7, -1, -3, -7, -7, 0, 7, 7, 3, 1, -9, -63, -45, -63, -63, 63, 63, 45, 63, 9, -5, -5, -135, -15, -105, 0, 105, 15, 135, 5, 5
OFFSET
0,7
COMMENTS
If n = 2*k, then T(n,k) = 0 since the k-th Bernstein basis polynomial of degree n has a single unique local maximum occurring at t = k/n, which coincides with the interval midpoint t = 1/2 (T(0,0) = 0 because the only 0 degree Bernstein basis polynomial is the constant 1).
LINKS
Rita T. Farouki, The Bernstein polynomial basis: A centennial retrospective, Computer Aided Geometric Design Vol. 29 (2012), 379-419.
Eric Weisstein's World of Mathematics, Bernstein Polynomial
FORMULA
T(n, k) = numerator of 2*A141692(n,k)/A000079(n).
T(n, k) = n*(binomial(n-1, k-1) - binomial(n-1, k))/gcd(n*(binomial(n-1, k-1) - binomial(n-1, k)), 2^(n-1)).
T(n, n-k) = -T(n,k).
T(n, 0) = -n.
T(2*n+1, 1) = -A000466(n).
T(2*n, 1) = -A069834(n-1), n > 1.
T(n, k)/A320086(n,k) = 4*n*(k/n - 1/2)*A319861(n,k)/A319861(n,k).
Sum_{k=0..n} k*T(n,k)/A320086(n,k) = n.
Sum_{k=0..n} k^2*T(n,k)/A320086(n,k) = n^2.
Sum_{k=0..n} k*(k-1)*T(n,k)/A320086(n,k) = n*(n - 1).
EXAMPLE
Triangle begins:
0;
-1, 1;
-1, 0, 1;
-3, -3, 3, 3;
-1, -1, 0, 1, 1;
-5, -15, -5, 5, 15, 5;
-3, -3, -15, 0, 15, 3, 3;
-7, -35, -63, -35, 35, 63, 35, 7;
-1, -3, -7, -7, 0, 7, 7, 3, 1;
-9, -63, -45, -63, -63, 63, 63, 45, 63, 9;
-5, -5, -135, -15, -105, 0, 105, 15, 135, 5, 5;
...
MAPLE
T:=proc(n, k) n*(binomial(n-1, k-1)-binomial(n-1, k))/gcd(n*(binomial(n-1, k-1)-binomial(n-1, k)), 2^(n-1)); end proc: seq(seq(T(n, k), k=0..n), n=0..11); # Muniru A Asiru, Oct 06 2018
MATHEMATICA
Table[Numerator[n*(Binomial[n-1, k-1] - Binomial[n-1, k])/2^(n-1)], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Maxima)
T(n, k) := n*(binomial(n - 1, k - 1) - binomial(n - 1, k))/gcd(n*(binomial(n - 1, k - 1) - binomial(n - 1, k)), 2^(n - 1))$
tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, n))$
(Sage)
def A320085(n, k): return numerator(n*(binomial(n-1, k-1) - binomial(n-1, k))/2^(n-1))
flatten([[A320085(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 19 2021
CROSSREFS
KEYWORD
sign,easy,tabl,frac
AUTHOR
STATUS
approved